Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
On March 17-19 and May 19-21,1995, analysis seminars were organized jointly at the universities of Copenhagen and Lund, under the heading "Danish-Swedish Analysis Seminar". The main topic was partial differen- tial equations and related problems of mathematical physics. The lectures given are presented in this volume, some as short abstracts and some as quite complete expositions or survey papers. They span over a large vari- ety of topics. The most frequently occurring theme is the use of microlocal analysis which is now important also in the study of non-linear differential equations although it originated entirely within the linear theory. Perhaps it is less surprising that microlocal analysis has proved to be useful in the study of mathematical problems of classical quantum mechanics, for it re- ceived a substantial input of ideas from that field. The scientific committee for the invitation of speakers consisted of Gerd Grubb in Copenhagen, Lars Hormander and Anders MeHn in Lund, and Jo- hannes Sjostrand in Paris. Lars Hormander and Anders Melin have edited the proceedings. They were hosts of the seminar days in Lund while Gerd Grubb was the host in Copenhagen. Financial support was obtained from the mathematics departments in Copenhagen and Lund, CNRS in France, the Danish and Swedish Na- tional Research Councils, Gustaf Sigurd Magnuson's foundation at the Royal Swedish Academy of Sciences, and the Wenner-Gren foundation in Stockholm. We want to thank all these organisations for their support.
This book presents, for the first time, the unpublished manuscripts of Lars Hoermander, written between 1951 and 2007. Hoermander himself organised the manuscripts and also wrote the notes explaining their origins, presenting the material in the form he fully intended it to be published in. As his daughter, Sofia Brostroem, mentions in the Foreword, towards the end of his life, Hoermander "carefully went through his unpublished manuscripts, checking and revising each of them with his very critical eye, deciding what should be kept for posterity and what should be thrown out". He also compiled the complete bibliography of all his published mathematical works that is included at the end of the present book. Of both historical and mathematical value, the contents of this book will undoubtedly inspire mathematicians of different horizons.
On March 17-19 and May 19-21,1995, analysis seminars were organized jointly at the universities of Copenhagen and Lund, under the heading "Danish-Swedish Analysis Seminar". The main topic was partial differen- tial equations and related problems of mathematical physics. The lectures given are presented in this volume, some as short abstracts and some as quite complete expositions or survey papers. They span over a large vari- ety of topics. The most frequently occurring theme is the use of microlocal analysis which is now important also in the study of non-linear differential equations although it originated entirely within the linear theory. Perhaps it is less surprising that microlocal analysis has proved to be useful in the study of mathematical problems of classical quantum mechanics, for it re- ceived a substantial input of ideas from that field. The scientific committee for the invitation of speakers consisted of Gerd Grubb in Copenhagen, Lars Hormander and Anders MeHn in Lund, and Jo- hannes Sjostrand in Paris. Lars Hormander and Anders Melin have edited the proceedings. They were hosts of the seminar days in Lund while Gerd Grubb was the host in Copenhagen. Financial support was obtained from the mathematics departments in Copenhagen and Lund, CNRS in France, the Danish and Swedish Na- tional Research Councils, Gustaf Sigurd Magnuson's foundation at the Royal Swedish Academy of Sciences, and the Wenner-Gren foundation in Stockholm. We want to thank all these organisations for their support.
The aim of this book is to give a systematic study of questions con cerning existence, uniqueness and regularity of solutions of linear partial differential equations and boundary problems. Let us note explicitly that this program does not contain such topics as eigenfunction expan sions, although we do give the main facts concerning differential operators which are required for their study. The restriction to linear equations also means that the trouble of achieving minimal assumptions concerning the smoothness of the coefficients of the differential equations studied would not be worth while; we usually assume that they are infinitely differenti able. Functional analysis and distribution theory form the framework for the theory developed here. However, only classical results of functional analysis are used. The terminology employed is that of BOURBAKI. To make the exposition self-contained we present in Chapter I the elements of distribution theory that are required. With the possible exception of section 1.8, this introductory chapter should be bypassed by a reader who is already familiar with distribution theory."
From the reviews: "Volumes III and IV complete L. H rmander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987 "This treatise is outstanding in every respect and must be counted among the great books in mathematics. It is certainly no easy reading (...) but a careful study is extremely rewarding for its wealth of ideas and techniques and the beauty of presentation." J. Br ning in Zentralblatt MATH, 1987 Honours awarded to Lars H rmander: Fields Medal 1962, Speaker at International Congress 1970, Wolf Prize 1988, AMS Steele Prize 2006
From the reviews: "Volumes III and IV complete L. H rmander's treatise on linear partial differential equations. They constitute the most complete and up-to-date account of this subject, by the author who has dominated it and made the most significant contributions in the last decades.....It is a superb book, which must be present in every mathematical library, and an indispensable tool for all - young and old - interested in the theory of partial differential operators." L. Boutet de Monvel in Bulletin of the American Mathematical Society, 1987. "This treatise is outstanding in every respect and must be counted among the great books in mathematics. It is certainly no easy reading (...) but a careful study is extremely rewarding for its wealth of ideas and techniques and the beauty of presentation." J. Br ning in Zentralblatt MATH, 1987.
The first two chapters of this book are devoted to convexity in the classical sense, for functions of one and several real variables respectively. This gives a background for the study in the following chapters of related notions which occur in the theory of linear partial differential equations and complex analysis such as (pluri-)subharmonic functions, pseudoconvex sets, and sets which are convex for supports or singular supports with respect to a differential operator. In addition, the convexity conditions which are relevant for local or global existence of holomorphic differential equations are discussed.
Vol. 1 of Lars Hörmander's influential 4-volume treatise is a detailed exposition of the theory of distributions. From the reviews: "In order to illustrate the richness of the book: in my review of the 1983 edition [...] I gave a list of 20 subjects which were new compared to Hörmander's book of 1963. Most of these subjects concern important, basic and highly nontrivial theorems in analysis. Hörmander's treatment of these is extremely clear and efficient and often highly original. [...] Most of the exercises are witty, with an interesting point. The phrasing of both the exercises and the answers and hints is very careful [...] In all, the book can be highly recommended, both as a textbook for advanced students, and as background and reference for introductory courses on distributions and Fourier analysis. J.J. Duistermaat in Mededelingen van het Wiskundig Genootschap
Author received the 1962 Fields Medal Author received the 1988 Wolf Prize (honoring achievemnets of a lifetime) Author is leading expert in partial differential equations
In this introductory textbook, a revised and extended version of well-known lectures by L. Hörmander from 1986, four chapters are devoted to weak solutions of systems of conservation laws. Apart from that the book only studies classical solutions. Two chapters concern the existence of global solutions or estimates of the lifespan for solutions of nonlinear perturbations of the wave or Klein-Gordon equation with small initial data. Four chapters are devoted to microanalysis of the singularities of the solutions. This part assumes some familiarity with pseudodifferential operators which are standard in the theory of linear differential operators, but the extension to the more exotic classes of opertors needed in the nonlinear theory is presented in complete detail.
Five papers by distinguished American and European mathematicians describe some current trends in mathematics in the perspective of the recent past and in terms of expectations for the future. Among the subjects discussed are algebraic groups, quadratic forms, topological aspects of global analysis, variants of the index theorem, and partial differential equations.
Singularities of solutions of differential equations forms the common theme of these papers taken from a seminar held at the Institute for Advanced Study in Princeton in 1977-1978. While some of the lectures were devoted to the analysis of singularities, others focused on applications in spectral theory. As an introduction to the subject, this volume treats current research in the field in such a way that it can be studied with profit by the non-specialist.
|
You may like...
|