Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 17 of 17 matches in All Departments
Now in its 3e, "Film Properties of Plastics and Elastomers," has
been extensively revised. This is the only data handbook available
on the engineering properties of commercial polymeric films. It
details many physical, mechanical, optical, electrical, and
permeation properties within the context of specific test
parameters, providing a ready reference for comparing materials in
the same family as well as materials in different families. Data is
presented on the characteristics of 47 major plastic and elastomer
packaging materials. New to this edition, the resin chapters each
contain textual summary information including category, general
description, processing methods, applications, and other facts as
appropriate, such as reliability, weatherability, and regulatory
approval considerations for use in food and medical packaging.
Extensive references are provided.
Handbook of Thermoplastic Fluoropolymers: Properties, Characteristics and Data gathers key technical information about structure, characteristics, properties and processing methods of commercial thermoplastic fluoropolymers in one easy reference. Thermoplastic fluoropolymers have many desirable functional characteristics, such as high thermal stability, reliability at high mechanical loads, a wide range of operating temperatures, and high chemical and radiation stability. These characteristics make them crucial in many specialist applications, including in the military, biopharmaceuticals and environmental protection. This uniquely comprehensive guide to this versatile family of polymers will help processors, fabricators and end-users find new and innovative solutions. Detailed coverage of technical details of processing methods, characteristics, and chemical properties of commercial thermoplastic fluoropolymers all in one place make this the most authoritative reference to the subject available.
The Effect of Radiation on Properties of Polymers examines the effects of radiation on plastics and elastomers. Polymers are required in products or parts for a range of cutting-edge applications that are exposed to radiation, in areas such as space, medicine, and radiation processing. This book focuses on the effects of radiation exposure within that environment, providing in-depth data coverage organized by category of polymer. Aspects such as radiation impact on mechanical and thermal properties, including glass transition and heat deflection temperatures, are described, demonstrating how changes in these properties affect the performance of plastic or elastomer parts. The effect of radiation on electrical properties is also included. Supporting introductory chapters explain the key concepts of radiation, including the physical, mechanical, and thermal properties of plastics and elastomers. This is a vital resource for plastics engineers, product designers, and R&D professionals, working on products or parts for radioactive environments, as well as engineers and scientists in the medical, nuclear, and radiation processing industries. The book also supports researchers and scientists in plastics engineering, polymer processing and properties, polymer and coatings chemistry, materials science, and radiation.
The Effect of Long Term Thermal Exposure on Plastics and Elastomers, Second Edition brings together a wide range of essential data on the effect of long-term thermal exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. This second edition has been thoroughly revised to include the latest data and materials. This highly valuable handbook will support engineers, product designers, R&D professionals, and scientists who are working on plastics products or parts for high temperature environments across a range of industries. This readily available data will make it easy for practitioners to learn about plastic materials and their long- term thermal exposure without having to search the general literature or depend on suppliers. This book will also be of interest to researchers and advanced students in plastics engineering, polymer processing, coatings, and materials science and engineering.
Permeability Properties of Plastics and Elastomers, Fourth Edition provides a comprehensive collection of graphical multipoint and tabular data covering the permeation of liquids, vapors, and gases through plastic or polymeric materials, such as films, membranes, and containers. This updated edition includes an entirely new chapter on sustainable and biodegradable polymers and an extensive introductory section covering fatigue, what it is, how it is measured, and the fundamentals of permeation and permeability properties. Foundational information is also provided on the production of films, containers, membranes, and the markets and applications for these materials.
Fluorinated Coatings and Finishes Handbook: The Definitive User's Guide, Second Edition, addresses important, frequently posed questions by end-user design engineers, coaters, and coatings suppliers on fluorinated coatings and finishes, thus enabling them to achieve superior product qualities and shorter product and process development times. The book provides broad coverage of these fluorinated polymer coatings, including the best known PTFE, polytetrafluoroethylene, first trademarked as Teflon (R) and ePTFE (GoreTex (R)). Their inherent qualities of low surface tension, non-stick, low friction, high melting point, and chemical inertness make fluoropolymer coatings widely desirable across thousands of industrial and consumer applications, but these properties also make it difficult to convert fluoropolymers to coatings that have sufficient adhesion to the substrate to be protected. In this book, readers learn how fluoropolymer coatings are used and made, about their pigments and fillers, binders, dispersion processes, additives, and solvents. The book includes substrate preparation, coating properties, baking and curing processes, performance tests, applications, and health and safety.
This reference guide brings together a wide range of essential data on the effects of weather and UV light exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. In both normal and extreme environments, outdoor use has a variety of effects on different plastics and elastomers, including discoloring and brittleness. The data is supported by explanations of real-world engineering applications. The data tables in this book are supported by examples of real-world applications, enabling engineers and scientists to select the right materials for a given situation, across a wide range of sectors including construction, packaging, signage, consumer (e.g. toys, outdoor furniture), automotiveand aerospace, defense, etc. The third edition includes new text chapters that provide the
fundamental knowledge required to make best use of the data. Author
Larry McKeen has also added detailed descriptions of the effect of
weathering on the most common polymer classes such as polyolefins,
polyamides, polyesters, elastomers, fluoropolymers, biodegradable
plastics, etc., making this book an invaluable design guide as well
as an industry standard data source.
This reference guide brings together a wide range of essential data on the sterilization of plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data tables in this book enable engineers and scientists to select the right materials, and right sterilization method for a given product or application. The third edition includes new text chapters that provide the
underpinning knowledge required to make best use of the data. Larry
McKeen has also added detailed descriptions of sterilization
methods for most common polymer classes such as polyolefins,
polyamides, polyesters, elastomers, fluoropolymers, biodegradable
plastics. Data has been updated throughout, with expanded
information on newer classes of polymer utilized in medical devices
and sterile packaging, such as UHMWPE, high temperature plastics
(PEEK, PES, PPS, etc.), PBT, PETG, etc. The resulting Handbook is
an essential reference for Plastics Engineers, Materials Scientists
and Chemists working in contexts where sterilization is required,
such as food packaging, pharmaceutical packaging and medical
devices.
Permeability properties are essential data for the selection of materials and design of products across a broad range of market sectors from food packaging to Automotive applications to Medical Devices. This unique handbook brings together a wealth of permeability data in a form that enables quick like-for-like comparisons between materials. The data is supported by a full explanation of its interpretation, and an introduction to the engineering aspects of permeability in polymers. The third edition includes expanded explanatory text which makes
the book accessible to novices as well as experienced engineers,
written by industry insider and author Larry McKeen (DuPont), and
20% new data and major new explanatory text sections to aid in the
interpretation and application of the data.
The Effect of Sterilization Methods on Plastics and Elastomers, Fourth Edition brings together a wide range of essential data on the sterilization of plastics and elastomers, thus enabling engineers to make optimal material choices and design decisions. The data tables in this book enable engineers and scientists to select the right materials and sterilization method for a given product or application. The book is a unique and essential reference for anybody working with plastic materials that are likely to be exposed to sterilization methods, be it in medical device or packaging development, food packaging or other applications.
This reference guide brings together a wide range of critical
data on the effect of temperature on plastics and elastomers,
enabling engineers to make optimal material choices and design
decisions. The effects of humidity level and strain rate on
mechanical and electrical properties are also covered. The data are
supported by explanations of how to make use of the data in real
world engineering contexts. High (and low) temperatures can have a
significant impact on plastics processing and applications,
particularly in industries such as automotive, aerospace, oil and
gas, packaging, and medical devices, where metals are increasingly
being replaced by plastics. Additional plastics have also been
included for polyesters, polyamides and others where available,
including polyolefins, elastomers and fluoropolymers. Entirely new
sections on biodegradable polymers and thermosets have been added
to the book. The level of data included along with the large number
of graphs and tables for easy comparison saves readers the need to
contact suppliers, and the selection guide has been fully updated,
giving assistance on the questions which engineers should be asking
when specifying materials for any given application.
The Effect of Temperature and Other Factors on the Properties of Plastics and Elastomers, Fourth Edition provides data on the wide spectrum of plastics and TPEs with special reference to thermal stability. The mechanical, physical and electrical properties of plastics and elastomers are described as a function of temperature and humidity to help with the design of lighter more cost-effective plastic parts to replace metal ones. In this new edition, expertly edited data makes it easy for readers to learn about the properties of plastic materials without having to search the general literature or depend on suppliers. Additional types of plastics are examined, and the latest data on material characteristics are provided. Complex details such as how the thermal prehistory can effect final mechanical properties, and how temperature scans reveal dynamic mechanical behavior are also examined to build a deeper understanding of the materials.
The Effect of UV Light and Weather on Plastics and Elastomers, Fourth Edition, provides critical data on the effect of UV light and weathering on plastics and elastomers, enabling engineers, designers and R&D professionals to select the right materials when developing plastics products for a range of industries and applications. This information will also support academic researchers and scientists in developing polymeric materials for advanced applications.
Film Properties of Plastics and Elastomers, Fourth Edition is the only data handbook available on the engineering properties of commercial polymeric films. It details many physical, mechanical, optical, electrical and permeation properties within the context of specific test parameters, providing a ready reference for comparing materials in both the same and different families. Data is presented on the characteristics of major plastic and elastomer packaging materials, with the data in this edition updated to cover the five years since the previous edition was published. The resin chapters each contain textual summary information, including category, general description, processing methods, applications, reliability, weatherability, and regulatory approval considerations for use in food and medical packaging.
Part of a series of data-rich handbooks within the Plastics Design Library, Fatigue and Tribological Properties of Plastics and Elastomers provides a comprehensive collection of graphical multipoint data and tabular data covering the fatigue and tribological performance of plastics. The handbook is structured by grouping together plastics of similar polymer types into ten chapters. Each of these chapters is split into two sections: Fatigue Properties and Tribological Properties, and together they provide a compendium of several hundred graphs and charts, supplying the core data needed by engineers and scientists on a day-to-day basis. The data for this third edition has been updated to cover upwards of five years since the previous edition was published, and also includes an entirely new chapter covering sustainable and biodegradable polymers. The book also includes an extensive introductory section covering fatigue, what it is and how it is measured; the fundamentals of tribology; polymer chemistry and plastics composition. These chapters also provide readers with a full understanding of the data section, and how to put it to use as a hard-working information tool.
This reference guide brings together a wide range of critical data on the effect of creep and other long term effects on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data are supported by explanations of how to make use of the data in real world engineering contexts and provides the long-term properties data that designers need to create a product that will stand the test of time. This new edition represents a full update of the data, removing all obsolete data, adding new data, and updating the list of plastics manufacturers. Additional plastics have also been included for polyesters, polyamides and others where available, including polyolefins, elastomers and fluoropolymers. Entirely new sections on biodegradable polymers and thermosets have been added to the book. The level of data included - along with the large number of graphs and tables for easy comparison - saves readers the need to contact suppliers, and the selection guide has been fully updated, giving assistance on the questions which engineers should be asking when specifying materials for any given application.
This reference guide brings together a wide range of essential data on the effect of long term thermal exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data is supported by explanations of how to make use of the data in real-world engineering contexts. High heat environments are common in automotive, oil and gas, household appliances, coatings, space and aeronautics and many more end uses. As a result, thermal stability data are critically important to engineers designing parts particularly that replace metals, work that is common today as they look for ways to reduce weight. The data tables in this book enable engineers and scientists to select the right materials for a given product or application across a wide range of sectors. Several polymer classes are covered, including polyolefins,
polyamides, polyesters, elastomers, fluoropolymers, biodegradable
plastics and more, saving readers the need to contact suppliers.
The book also includes introductory sections to provide background
on plastic/polymer chemistry and formulation and plastic testing
methods, providing the knowledge required to make best use of the
data.
|
You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
(5)
Twice The Glory - The Making Of The…
Lloyd Burnard, Khanyiso Tshwaku
Paperback
|