Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The book focuses on forecasting foreign exchange rates via artificial neural networks. It creates and applies the highly useful computational techniques of Artificial Neural Networks (ANNs) to foreign-exchange-rate forecasting. The result is an up-to-date review of the most recent research developments in forecasting foreign exchange rates coupled with a highly useful methodological approach to predicting rate changes in foreign currency exchanges. Foreign Exchange Rate Forecasting with Artificial Neural Networks is targeted at both the academic and practitioner audiences. Managers, analysts and technical practitioners in financial institutions across the world will have considerable interest in the book, and scholars and graduate students studying financial markets and business forecast will also have considerable interest in the book. The book discusses the most important advances in foreign-exchange-rate forecasting and then systematically develops a number of new, innovative, and creatively crafted neural network models that reduce the volatility and speculative risk in the forecasting of foreign exchange rates. The book discusses and illustrates three general types of ANN models. Each of these model types reflect the following innovative and effective characteristics: (1) The first model type is a three-layer, feed-forward neural network with instantaneous learning rates and adaptive momentum factors that produce learning algorithms (both online and offline algorithms) to predict foreign exchange rates. (2) The second model type is the three innovative hybrid learning algorithms that have been created by combining ANNs with exponential smoothing, generalized linearauto-regression, and genetic algorithms. Each of these three hybrid algorithms has been crafted to forecast various aspects synergetic performance. (3) The third model type is the three innovative ensemble learning algorithms that combining multiple neural networks into an ensemble output. Empirical results reveal that these creative models can produce better performance with high accuracy or high efficiency.
The book focuses on forecasting foreign exchange rates via artificial neural networks. It creates and applies the highly useful computational techniques of Artificial Neural Networks (ANNs) to foreign-exchange-rate forecasting. The result is an up-to-date review of the most recent research developments in forecasting foreign exchange rates coupled with a highly useful methodological approach to predicting rate changes in foreign currency exchanges. Foreign Exchange Rate Forecasting with Artificial Neural Networks is targeted at both the academic and practitioner audiences. Managers, analysts and technical practitioners in financial institutions across the world will have considerable interest in the book, and scholars and graduate students studying financial markets and business forecast will also have considerable interest in the book. The book discusses the most important advances in foreign-exchange-rate forecasting and then systematically develops a number of new, innovative, and creatively crafted neural network models that reduce the volatility and speculative risk in the forecasting of foreign exchange rates. The book discusses and illustrates three general types of ANN models. Each of these model types reflect the following innovative and effective characteristics: (1) The first model type is a three-layer, feed-forward neural network with instantaneous learning rates and adaptive momentum factors that produce learning algorithms (both online and offline algorithms) to predict foreign exchange rates. (2) The second model type is the three innovative hybrid learning algorithms that have been created by combining ANNs with exponential smoothing, generalized linear auto-regression, and genetic algorithms. Each of these three hybrid algorithms has been crafted to forecast various aspects synergetic performance. (3) The third model type is the three innovative ensemble learning algorithms that combining multiple neural networks into an ensemble output. Empirical results reveal that these creative models can produce better performance with high accuracy or high efficiency.
Credit risk analysis is one of the most important topics in the field of financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. Especially for some credit-granting institutions such as commercial banks and credit companies, the ability to discriminate good customers from bad ones is crucial. The need for reliable quantitative models that predict defaults accurately is imperative so that the interested parties can take either preventive or corrective action. Hence credit risk analysis becomes very important for sustainability and profit of enterprises. In such backgrounds, this book tries to integrate recent emerging support vector machines and other computational intelligence techniques that replicate the principles of bio-inspired information processing to create some innovative methodologies for credit risk analysis and to provide decision support information for interested parties.
Credit risk analysis is one of the most important topics in the field of financial risk management. Due to recent financial crises and regulatory concern of Basel II, credit risk analysis has been the major focus of financial and banking industry. Especially for some credit-granting institutions such as commercial banks and credit companies, the ability to discriminate good customers from bad ones is crucial. The need for reliable quantitative models that predict defaults accurately is imperative so that the interested parties can take either preventive or corrective action. Hence credit risk analysis becomes very important for sustainability and profit of enterprises. In such backgrounds, this book tries to integrate recent emerging support vector machines and other computational intelligence techniques that replicate the principles of bio-inspired information processing to create some innovative methodologies for credit risk analysis and to provide decision support information for interested parties.
|
You may like...
Herontdek Jou Selfvertroue - Sewe Stappe…
Rolene Strauss
Paperback
(1)
|