Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Real-life problems are often quite complicated in form and nature and, for centuries, many different mathematical concepts, ideas and tools have been developed to formulate these problems theoretically and then to solve them either exactly or approximately. This book aims to gather a collection of papers dealing with several different problems arising from many disciplines and some modern mathematical approaches to handle them. In this respect, the book offers a wide overview on many of the current trends in Mathematics as valuable formal techniques in capturing and exploiting the complexity involved in real-world situations. Several researchers, colleagues, friends and students of Professor Maria Luisa Menendez have contributed to this volume to pay tribute to her and to recognize the diverse contributions she had made to the fields of Mathematics and Statistics and to the profession in general. She had a sweet and strong personality, and instilled great values and work ethics in her students through her dedication to teaching and research. Even though the academic community lost her prematurely, she would continue to provide inspiration to many students and researchers worldwide through her published work."
The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this powerful approach. Statistical Inference Based on Divergence Measures explores classical problems of statistical inference, such as estimation and hypothesis testing, on the basis of measures of entropy and divergence. The first two chapters form an overview, from a statistical perspective, of the most important measures of entropy and divergence and study their properties. The author then examines the statistical analysis of discrete multivariate data with emphasis is on problems in contingency tables and loglinear models using phi-divergence test statistics as well as minimum phi-divergence estimators. The final chapter looks at testing in general populations, presenting the interesting possibility of introducing alternative test statistics to classical ones like Wald, Rao, and likelihood ratio. Each chapter concludes with exercises that clarify the theoretical results and present additional results that complement the main discussions. Clear, comprehensive, and logically developed, this book offers a unique opportunity to gain not only a new perspective on some standard statistics problems, but the tools to put it into practice.
The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this powerful approach. Statistical Inference Based on Divergence Measures explores classical problems of statistical inference, such as estimation and hypothesis testing, on the basis of measures of entropy and divergence. The first two chapters form an overview, from a statistical perspective, of the most important measures of entropy and divergence and study their properties. The author then examines the statistical analysis of discrete multivariate data with emphasis is on problems in contingency tables and loglinear models using phi-divergence test statistics as well as minimum phi-divergence estimators. The final chapter looks at testing in general populations, presenting the interesting possibility of introducing alternative test statistics to classical ones like Wald, Rao, and likelihood ratio. Each chapter concludes with exercises that clarify the theoretical results and present additional results that complement the main discussions. Clear, comprehensive, and logically developed, this book offers a unique opportunity to gain not only a new perspective on some standard statistics problems, but the tools to put it into practice.
Real-life problems are often quite complicated in form and nature and, for centuries, many different mathematical concepts, ideas and tools have been developed to formulate these problems theoretically and then to solve them either exactly or approximately. This book aims to gather a collection of papers dealing with several different problems arising from many disciplines and some modern mathematical approaches to handle them. In this respect, the book offers a wide overview on many of the current trends in Mathematics as valuable formal techniques in capturing and exploiting the complexity involved in real-world situations. Several researchers, colleagues, friends and students of Professor Maria Luisa Menendez have contributed to this volume to pay tribute to her and to recognize the diverse contributions she had made to the fields of Mathematics and Statistics and to the profession in general. She had a sweet and strong personality, and instilled great values and work ethics in her students through her dedication to teaching and research. Even though the academic community lost her prematurely, she would continue to provide inspiration to many students and researchers worldwide through her published work."
|
You may like...
|