Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo- logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap- plications, we wished to have a self-consistent text (see the scheme below). There- fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil- iar in some related sections with the notions like the Bochner integral, the Au- mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ...Otherwise, one can use the recommended literature. Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems.
This book is devoted to the topological fixed point theory of multivalued mappings including applications to differential inclusions and mathematical economy. It is the first monograph dealing with the fixed point theory of multivalued mappings in metric ANR spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Current results are presented.
This monograph gives a systematic presentation of classical and recent results obtained in the last couple of years. It comprehensively describes the methods concerning the topological structure of fixed point sets and solution sets for differential equations and inclusions. Many of the basic techniques and results recently developed about this theory are presented, as well as the literature that is disseminated and scattered in several papers of pioneering researchers who developed the functional analytic framework of this field over the past few decades. Several examples of applications relating to initial and boundary value problems are discussed in detail. The book is intended to advanced graduate researchers and instructors active in research areas with interests in topological properties of fixed point mappings and applications; it also aims to provide students with the necessary understanding of the subject with no deep background material needed. This monograph fills the vacuum in the literature regarding the topological structure of fixed point sets and its applications.
This book is devoted to the topological fixed point theory of multivalued mappings including applications to differential inclusions and mathematical economy. It is the first monograph dealing with the fixed point theory of multivalued mappings in metric ANR spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Current results are presented.
Our book is devoted to the topological fixed point theory both for single-valued and multivalued mappings in locally convex spaces, including its application to boundary value problems for ordinary differential equations (inclusions) and to (multivalued) dynamical systems. It is the first monograph dealing with the topo- logical fixed point theory in non-metric spaces. Although the theoretical material was tendentially selected with respect to ap- plications, we wished to have a self-consistent text (see the scheme below). There- fore, we supplied three appendices concerning almost-periodic and derivo-periodic single-valued {multivalued) functions and (multivalued) fractals. The last topic which is quite new can be also regarded as a contribution to the fixed point theory in hyperspaces. Nevertheless, the reader is assumed to be at least partly famil- iar in some related sections with the notions like the Bochner integral, the Au- mann multivalued integral, the Arzela-Ascoli lemma, the Gronwall inequality, the Brouwer degree, the Leray-Schauder degree, the topological (covering) dimension, the elemens of homological algebra, ...Otherwise, one can use the recommended literature. Hence, in Chapter I, the topological and analytical background is built. Then, in Chapter II (and partly already in Chapter I), topological principles necessary for applications are developed, namely: the fixed point index theory (resp. the topological degree theory), the Lefschetz and the Nielsen theories both in absolute and relative cases, periodic point theorems, topological essentiality, continuation-type theorems.
|
You may like...
We Were Perfect Parents Until We Had…
Vanessa Raphaely, Karin Schimke
Paperback
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|