Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Today, wireless infrared transmission has entered our homes, offices, industry and health care, with applications in the field of remote control, telemetry and local communication. Low-Power Wireless Infrared Communications is about the underlying technology. As most equipment is battery-powered, the emphasis is on power optimization of the infrared transmission system. System parameters as well as environmental parameters that determine the eventual transmission quality are identified, to facilitate well-reasoned system design. Many design rules, based on calculations, measurements and simulations, are presented to help the designer push the performance close to the limits set by nature and the available technology. Firstly, the basic transmission link is introduced, and strategies to optimize its signal-to-noise ratio are discussed. Lighting flicker is identified as a possible source of interference. Then, receiver noise and bandwidth are discussed. It is argued that noise optimization and bandwidth optimization do not necessarily conflict. The following chapters provide the reader with an overview of modulation and synchronization techniques. Pulse position modulation is recognized as an attractive technique for low-power purposes. As receiver synchronization in those systems is a subject hardly covered by literature, an in-depth discussion of possible synchronization subsystems is included. This book is essential reading for researchers and designers of infrared communication systems and those who are involved in standardization activities (Infrared Data Association, IrDA). For those who are new to the area, the first chapter serves as an ideal introduction.
Today, wireless infrared transmission has entered our homes, offices, industry and health care, with applications in the field of remote control, telemetry, and local communication. This book is about the underlying technology. As it is an outgrowth of my Ph.D. thesis, the emphasis is on fundamental aspects rather than industrial aspects, like the standardization effort by the IrDA [7]. I guess that this is not a drawback, as, eventually, the laws of physics apply to all of us! As the applied radiation is not necessarily in the infrared, throughout the book we usually prefer the term optical transmission. As most equipment is battery-powered, the emphasis is on power optimiza tion of the optical transmission system. System parameters as well as environ mental parameters that determine the eventual transmission quality are iden tified, to facilitate well-reasoned system design. Many design rules, based on calculations, measurements and simulations are presented to help the designer push the performance close to the limits set by nature and the available tech nology. The first chapters introduce the subject and the present the scope of the book. Then, the basic transmission link is introduced in chapter 3, and strate gies to optimize its signal-to-noise ratio are discussed. Lighting flicker is identi fied as a possible source of interference. Then, receiver noise and bandwidth are discussed in chapter 4, mainly based on the material presented in [66], [67], [69].
|
You may like...
Roadmap B2+ Teacher's Book with…
Monica Berlis, Damian Williams, …
Spiral bound
R2,110
Discovery Miles 21 100
Team Together 1 Teacher's Book with…
Catherine Zgouras, Magdalena Custodio, …
Spiral bound
R2,324
Discovery Miles 23 240
Team Together 3 Teacher's Book with…
Lucy Norris, Magdalena Custodio, …
Spiral bound
R2,335
Discovery Miles 23 350
The Theory and Practice of Group…
Chao-Chen Chen, Mei-Lan Lo
Hardcover
R4,032
Discovery Miles 40 320
|