Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
The purpose of the present monograph is to systematically develop a classification theory of Riemann surfaces. Some first steps will also be taken toward a classification of Riemannian spaces. Four phases can be distinguished in the chronological background: the type problem; general classification; compactifications; and extension to higher dimensions. The type problem evolved in the following somewhat overlapping steps: the Riemann mapping theorem, the classical type problem, and the existence of Green's functions. The Riemann mapping theorem laid the foundation to classification theory: there are only two conformal equivalence classes of (noncompact) simply connected regions. Over half a century of efforts by leading mathematicians went into giving a rigorous proof of the theorem: RIEMANN, WEIERSTRASS, SCHWARZ, NEUMANN, POINCARE, HILBERT, WEYL, COURANT, OSGOOD, KOEBE, CARATHEODORY, MONTEL. The classical type problem was to determine whether a given simply connected covering surface of the plane is conformally equivalent to the plane or the disko The problem was in the center of interest in the thirties and early forties, with AHLFORS, KAKUTANI, KOBAYASHI, P. MYRBERG, NEVANLINNA, SPEISER, TEICHMULLER and others obtaining incisive specific results. The main problem of finding necessary and sufficient conditions remains, however, unsolved."
Capacity functions were born out of geometric. necessity, a decade and a half ago. Plane regions had been found of arbitrarily small area, yet with a totally disconnected boundary. Such regions seemed to defy the very spirit of Riemann's mapping theorem. They could be mapped conformally and univalently into a disk, with the single boundary point at infinity being stretched into a circle. The plausible explanation of the mystery is, of course, as follows. Under a mapping of the punctured sphere onto a disk, an area element near the punctured point would have to stretch more in the circular direction than in the radial direction, and the conformality would be destroyed. But if there is a sufficiently heavy accumulation of other boundary components, these can take over the distortion, and the mapping of the region itself remains conformal. Such phenomena made it an important problem to characterize pointlike boundary components which were unstable, i.e., hid in them selves this power of stretching into proper continua. Standard tools such as mass distributions, potentials, and transfinite diameters could not be used here, as they were subject to the vagaries of the other com ponents. The characterization had to be intrinsic, depending only on the region itself, in a conformally invariant manner. This goal was achieved in the following fashion (SARlO 10, 13])."
The theory of Riemann surfaces has a geometric and an analytic part. The former deals with the axiomatic definition of a Riemann surface, methods of construction, topological equivalence, and conformal mappings of one Riemann surface on another. The analytic part is concerned with the existence and properties of functions that have a special character connected with the conformal structure, for instance: subharmonic, harmonic, and analytic functions. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The theory of Riemann surfaces has a geometric and an analytic part. The former deals with the axiomatic definition of a Riemann surface, methods of construction, topological equivalence, and conformal mappings of one Riemann surface on another. The analytic part is concerned with the existence and properties of functions that have a special character connected with the conformal structure, for instance: subharmonic, harmonic, and analytic functions. Originally published in 1960. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The description for this book, Contributions to the Theory of Riemann Surfaces. (AM-30), will be forthcoming.
|
You may like...
The First King - The Selene Trilogy…
Shameez Patel Papathanasiou
Paperback
|