Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
ThesubjectofthisbookisSemi-In?niteAlgebra,ormorespeci?cally,Semi-In?nite Homological Algebra. The term "semi-in?nite" is loosely associated with objects that can be viewed as extending in both a "positive" and a "negative" direction, withsomenaturalpositioninbetween,perhapsde?nedupto a"?nite"movement. Geometrically, this would mean an in?nite-dimensional variety with a natural class of "semi-in?nite" cycles or subvarieties, having always a ?nite codimension in each other, but in?nite dimension and codimension in the whole variety [37]. (For further instances of semi-in?nite mathematics see, e. g. , [38] and [57], and references below. ) Examples of algebraic objects of the semi-in?nite type range from certain in?nite-dimensional Lie algebras to locally compact totally disconnected topolo- cal groups to ind-schemes of ind-in?nite type to discrete valuation ?elds. From an abstract point of view, these are ind-pro-objects in various categories, often - dowed with additional structures. One contribution we make in this monograph is the demonstration of another class of algebraic objects that should be thought of as "semi-in?nite", even though they do not at ?rst glance look quite similar to the ones in the above list. These are semialgebras over coalgebras, or more generally over corings - the associative algebraic structures of semi-in?nite nature. The subject lies on the border of Homological Algebra with Representation Theory, and the introduction of semialgebras into it provides an additional link with the theory of corings [23], as the semialgebrasare the natural objects dual to corings.
Semi-Infinite Geometry is a theory of "doubly infinite-dimensional" geometric or topological objects. In this book the author explains what should be meant by an algebraic variety of semi-infinite nature. Then he applies the framework of semiderived categories, suggested in his previous monograph titled Homological Algebra of Semimodules and Semicontramodules, (Birkhäuser, 2010), to the study of semi-infinite algebraic varieties. Quasi-coherent torsion sheaves and flat pro-quasi-coherent pro-sheaves on ind-schemes are discussed at length in this book, making it suitable for use as an introduction to the theory of quasi-coherent sheaves on ind-schemes. The main output of the homological theory developed in this monograph is the functor of semitensor product on the semiderived category of quasi-coherent torsion sheaves, endowing the semiderived category with the structure of a tensor triangulated category. The author offers two equivalent constructions of the semitensor product, as well as its particular case, the cotensor product, and shows that they enjoy good invariance properties. Several geometric examples are discussed in detail in the book, including the cotangent bundle to an infinite-dimensional projective space, the universal fibration of quadratic cones, and the important popular example of the loop group of an affine algebraic group.
ThesubjectofthisbookisSemi-In?niteAlgebra,ormorespeci?cally,Semi-In?nite Homological Algebra. The term "semi-in?nite" is loosely associated with objects that can be viewed as extending in both a "positive" and a "negative" direction, withsomenaturalpositioninbetween,perhapsde?nedupto a"?nite"movement. Geometrically, this would mean an in?nite-dimensional variety with a natural class of "semi-in?nite" cycles or subvarieties, having always a ?nite codimension in each other, but in?nite dimension and codimension in the whole variety [37]. (For further instances of semi-in?nite mathematics see, e. g. , [38] and [57], and references below. ) Examples of algebraic objects of the semi-in?nite type range from certain in?nite-dimensional Lie algebras to locally compact totally disconnected topolo- cal groups to ind-schemes of ind-in?nite type to discrete valuation ?elds. From an abstract point of view, these are ind-pro-objects in various categories, often - dowed with additional structures. One contribution we make in this monograph is the demonstration of another class of algebraic objects that should be thought of as "semi-in?nite", even though they do not at ?rst glance look quite similar to the ones in the above list. These are semialgebras over coalgebras, or more generally over corings - the associative algebraic structures of semi-in?nite nature. The subject lies on the border of Homological Algebra with Representation Theory, and the introduction of semialgebras into it provides an additional link with the theory of corings [23], as the semialgebrasare the natural objects dual to corings.
This research monograph develops the theory of relative nonhomogeneous Koszul duality. Koszul duality is a fundamental phenomenon in homological algebra and related areas of mathematics, such as algebraic topology, algebraic geometry, and representation theory. Koszul duality is a popular subject of contemporary research. This book, written by one of the world's leading experts in the area, includes the homogeneous and nonhomogeneous quadratic duality theory over a nonsemisimple, noncommutative base ring, the Poincare-Birkhoff-Witt theorem generalized to this context, and triangulated equivalences between suitable exotic derived categories of modules, curved DG comodules, and curved DG contramodules. The thematic example, meaning the classical duality between the ring of differential operators and the de Rham DG algebra of differential forms, involves some of the most important objects of study in the contemporary algebraic and differential geometry. For the first time in the history of Koszul duality the derived D-\Omega duality is included into a general framework. Examples highly relevant for algebraic and differential geometry are discussed in detail.
|
You may like...
Better Choices - Ensuring South Africa's…
Greg Mills, Mcebisi Jonas, …
Paperback
Surfacing - On Being Black And Feminist…
Desiree Lewis, Gabeba Baderoon
Paperback
Wits University At 100 - From Excavation…
Wits Communications
Paperback
|