![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Digital holography and digital image processing are twins born by computer era. They share origin, theoretical base, methods and algorithms. The present book describes these common fundamentals principles, methods and algorithms including image and hologram digitization, data compression, digital transforms and efficient computational algorithms, statistical and Monte-Carlo methods, image restoration and enhancement, image reconstruction in tomography and digital holography, discrete signal resampling and image geometrical transformations, accurate measurements and reliable target localization in images, recording and reconstruction of computer generated holograms, adaptive and nonlinear filters for sensor signal perfecting and image restoration and enhancement. The book combines theory, heavily illustrated practical methods and efficient computational algorithms and is written for senior-level undergraduate and graduate students, researchers and engineers in optics, photonics, opto-electronics and electronic engineering.
1.1 Digital Optics as a Subject Improvement of the quality of optical devices has always been the central task of experimental optics. In modern terms, improvements in sensitivity and resolution have equated higher quality with greater informational throughput. For most of today's applications, optics and electronics have, in essence, solved the problem of generating high quality pictures with great informational ca pacity. Effective use of the enormous amount of information contained in the images necessitates processing pictures, holograms, and interferograms. The manner in which information might be extracted from optical entities has be come a topic of current interest. The informational aspects of optical signals and systems might serve as a basis for attacking this question by making use of information theory and signal communication theory, and by enlisting modern tools and methods for data processing (the most important and powerful of which are those of digi tal computation). Exploiting modern advances in electronics has allowed new wavelength ranges and new kinds of radiation to be used in optics. Comput ers have extended our knowledge of the informational essence of radiation. Thus, computerized optical devices enhance not only the optical capabilities of sight, but also its analytical capabilities as well, thus opening qualitatively new horizons to all the areas in which optical devices have found application."
1.1 Digital Optics as a Subject Improvement of the quality of optical devices has always been the central task of experimental optics. In modern terms, improvements in sensitivity and resolution have equated higher quality with greater informational throughput. For most of today's applications, optics and electronics have, in essence, solved the problem of generating high quality pictures with great informational ca pacity. Effective use of the enormous amount of information contained in the images necessitates processing pictures, holograms, and interferograms. The manner in which information might be extracted from optical entities has be come a topic of current interest. The informational aspects of optical signals and systems might serve as a basis for attacking this question by making use of information theory and signal communication theory, and by enlisting modern tools and methods for data processing (the most important and powerful of which are those of digi tal computation). Exploiting modern advances in electronics has allowed new wavelength ranges and new kinds of radiation to be used in optics. Comput ers have extended our knowledge of the informational essence of radiation. Thus, computerized optical devices enhance not only the optical capabilities of sight, but also its analytical capabilities as well, thus opening qualitatively new horizons to all the areas in which optical devices have found application."
Digital holography and digital image processing are twins born by computer era. They share origin, theoretical base, methods and algorithms. The present book describes these common fundamentals principles, methods and algorithms including image and hologram digitization, data compression, digital transforms and efficient computational algorithms, statistical and Monte-Carlo methods, image restoration and enhancement, image reconstruction in tomography and digital holography, discrete signal resampling and image geometrical transformations, accurate measurements and reliable target localization in images, recording and reconstruction of computer generated holograms, adaptive and nonlinear filters for sensor signal perfecting and image restoration and enhancement. The book combines theory, heavily illustrated practical methods and efficient computational algorithms and is written for senior-level undergraduate and graduate students, researchers and engineers in optics, photonics, opto-electronics and electronic engineering.
|
You may like...
African Nature Notes and Reminiscences
Frederick Courteney Selous
Hardcover
R809
Discovery Miles 8 090
Numbers, Information and Complexity
Ingo Althoefer, Ning Cai, …
Hardcover
R5,507
Discovery Miles 55 070
Turning Points in Compassion - Personal…
Gypsy Wulff, Fran Chambers
Hardcover
R742
Discovery Miles 7 420
Bonferroni-type Inequalities with…
Janos Galambos, Italo Simonelli
Hardcover
R2,801
Discovery Miles 28 010
Agent-Based Modeling and Network…
Akira Namatame, Shu-Heng Chen
Hardcover
R2,970
Discovery Miles 29 700
|