Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Recent economic trends, especially the worldwide decline in oil prices, and an altered political climate in the United States have combined to bring about major reductions in research on renewable energy resources. Yet there is no escaping the "facts of life" with regard to these resources. The days of inexpensive fossil energy are clearly numbered, the credibility of nuclear energy has fallen to a new low, and fusion energy stands decades or more from practical realization. Sooner than we may wish, we will have to turn to renewable raw materials - plant "biomass" and, especially, wood - as significant suppliers of energy for both industry and everyday needs. It is therefore especially important to have a single, comprehensive and current source of information on a key step in any process for the technological exploitation of woody materials, cellulose hydrolysis. Further more, it is essential that any such treatment be unbiased with respect to the two methods - chemical and biochemical - for the breakdown of cellulose to sugars. Researchers on cellulose hydrolysis have frequently been chided by persons from industry, especially those individuals concerned with determining the economic feasibility of various technological alternatives. They tell us that schemes for the utilization of wood and other such resources fly in the face of economic realities."
The concept of controlled release has attracted increasing attention over the last two decades, with the applications of this technology proliferating in diverse fields in cluding medicine, agriculture and biotechnology. Research and developmental efforts related to controlled release are multiplying in both industry and academia. The reason for this phenomenal growth is obvious. The use of a variety of biologically active agents, such as drugs, fertilizers and pesticides, has become an integral part of modern society. Along with the use of these reagents has evolved an awareness that their uncontrolled application almost inevitably induces harmful effects on the health of humans and their surrounding environments. To eliminate or minimize these harmful effects necessitates the controlled release of these chemicals. Moreover, the controlled release of substances, not usually considered toxic or hazardous, e.g., some catalysts and nutrients, can enhance their effectiveness. The number and variety of controlled release systems, differing in their physical and chemical makeup, are increasing rapidly. Proliferation almost always demands correlation, generalization and unification; it requires both the development of underlying theories of their behavior and the mechanistic interpretation of their performance. This, in turn, requires a statistical and mathematical (quantitative) treatment of the scientific information and technical data pertaining to them. A quantitative treatment can also facilitate the formulation of procedures for computer-aided design of these systems through a priori prediction of their per formance for a variety of design parameters.
|
You may like...
|