Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
This book provides the state-of-the-art research on aerial communications coexisting with terrestrial networks from physical, MAC, network, and application layer perspectives. It includes thorough discussion of control issues, access techniques and resource sharing between cellular communication and aerial communications to accommodate larger volumes of traffic and to provide better service to users. Other challenges are explored in this text are: identification of services, radio resource allocation and resource management for aerial links, self-organizing aerial networks, aerial offloading, and performance evaluation of aerial communications. This volume will be a highly useful resource for students, researchers and engineers interested in obtaining comprehensive information on the design, evaluation, and applications of aerial access networks and communications.
This book presents novel RIS-Based Smart Radio techniques, targeting at achieving high-quality channel links in cellular communications via design and optimization of the RIS construction. Unlike traditional antenna arrays, three unique characteristics of the RIS will be revealed in this book. First, the built-in programmable configuration of the RIS enables analog beamforming inherently without extra hardware or signal processing. Second, the incident signals can be controlled to partly reflect and partly transmit through the RIS simultaneously, adding more flexibility to signal transmission. Third, the RIS has no digital processing capability to actively send signals nor any radio frequency (RF) components. As such, it is necessary to develop novel channel estimation and communication protocols, design joint digital and RIS-based analog beamforming schemes and perform interference control via mixed reflection and transmission. This book also investigates how to integrate the RIS to legacy communication systems. RIS techniques are further investigated in this book (benefited from its ability to actively shape the propagation environment) to achieve two types of wireless applications, i.e., RF sensing and localization. The influence of the sensing objectives on the wireless signal propagation can be potentially recognized by the receivers, which are then utilized to identify the objectives in RF sensing. Unlike traditional sensing techniques, RIS-aided sensing can actively customize the wireless channels and generate a favorable massive number of independent paths interacting with the sensing objectives. It is desirable to design RIS-based sensing algorithms, and optimize RIS configurations. For the second application, i.e., RIS aided localization, an RIS is deployed between the access point (AP) and users. The AP can then analyze reflected signals from users via different RIS configurations to obtain accurate locations of users. However, this is a challenging task due to the dynamic user topology, as well as the mutual influence between multiple users and the RIS. Therefore, the operations of the RIS, the AP, and multiple users need to be carefully coordinated. A new RIS-based localization protocol for device cooperation and an RIS configuration optimization algorithm are also required. This book targets researchers and graduate-level students focusing on communications and networks. Signal processing engineers, computer and information scientists, applied mathematicians and statisticians, who work in RIS research and development will also find this book useful.
Physical layer security has recently become an emerging technique to complement and significantly improve the communication security of wireless networks. Compared to cryptographic approaches, physical layer security is a fundamentally different paradigm where secrecy is achieved by exploiting the physical layer properties of the communication system, such as thermal noise, interference, and the time-varying nature of fading channels. Written by pioneering researchers, Physical Layer Security in Wireless Communications supplies a systematic overview of the basic concepts, recent advancements, and open issues in providing communication security at the physical layer. It introduces the key concepts, design issues, and solutions to physical layer security in single-user and multi-user communication systems, as well as large-scale wireless networks. The book starts with a brief introduction to physical layer security. The rest of the book is organized into four parts based on the different approaches used for the design and analysis of physical layer security techniques: Information Theoretic Approaches: introduces capacity-achieving methods and coding schemes for secure communication, as well as secret key generation and agreement over wireless channels Signal Processing Approaches: covers recent progress in applying signal processing techniques to design physical layer security enhancements Game Theoretic Approaches: discusses the applications of game theory to analyze and design wireless networks with physical layer security considerations Graph Theoretic Approaches: presents the use of tools from graph theory and stochastic geometry to analyze and design large-scale wireless networks with physical layer security constraints Presenting high-level discussions along with specific examples, illustrations, and references to conference and journal articles, this is an ideal reference for postgraduate students, researchers, and engineers that need to obtain a macro-level understanding of physical layer security and its role in future wireless communication systems.
This book presents novel RIS-Based Smart Radio techniques, targeting at achieving high-quality channel links in cellular communications via design and optimization of the RIS construction. Unlike traditional antenna arrays, three unique characteristics of the RIS will be revealed in this book. First, the built-in programmable configuration of the RIS enables analog beamforming inherently without extra hardware or signal processing. Second, the incident signals can be controlled to partly reflect and partly transmit through the RIS simultaneously, adding more flexibility to signal transmission. Third, the RIS has no digital processing capability to actively send signals nor any radio frequency (RF) components. As such, it is necessary to develop novel channel estimation and communication protocols, design joint digital and RIS-based analog beamforming schemes and perform interference control via mixed reflection and transmission. This book also investigates how to integrate the RIS to legacy communication systems. RIS techniques are further investigated in this book (benefited from its ability to actively shape the propagation environment) to achieve two types of wireless applications, i.e., RF sensing and localization. The influence of the sensing objectives on the wireless signal propagation can be potentially recognized by the receivers, which are then utilized to identify the objectives in RF sensing. Unlike traditional sensing techniques, RIS-aided sensing can actively customize the wireless channels and generate a favorable massive number of independent paths interacting with the sensing objectives. It is desirable to design RIS-based sensing algorithms, and optimize RIS configurations. For the second application, i.e., RIS aided localization, an RIS is deployed between the access point (AP) and users. The AP can then analyze reflected signals from users via different RIS configurations to obtain accurate locations of users. However, this is a challenging task due to the dynamic user topology, as well as the mutual influence between multiple users and the RIS. Therefore, the operations of the RIS, the AP, and multiple users need to be carefully coordinated. A new RIS-based localization protocol for device cooperation and an RIS configuration optimization algorithm are also required. This book targets researchers and graduate-level students focusing on communications and networks. Signal processing engineers, computer and information scientists, applied mathematicians and statisticians, who work in RIS research and development will also find this book useful.
This book discusses how to plan the time-variant placements of the UAVs served as base station (BS)/relay, which is very challenging due to the complicated 3D propagation environments, as well as many other practical constraints such as power and flying speed. Spectrum sharing with existing cellular networks is also investigated in this book. The emerging unmanned aerial vehicles (UAVs) have been playing an increasing role in the military, public, and civil applications. To seamlessly integrate UAVs into future cellular networks, this book will cover two main scenarios of UAV applications as follows. The first type of applications can be referred to as UAV Assisted Cellular Communications. Second type of application is to exploit UAVs for sensing purposes, such as smart agriculture, security monitoring, and traffic surveillance. Due to the limited computation capability of UAVs, the real-time sensory data needs to be transmitted to the BS for real-time data processing. The cellular networks are necessarily committed to support the data transmission for UAVs, which the authors refer to as Cellular assisted UAV Sensing. To support real-time sensing streaming, the authors design joint sensing and communication protocols, develop novel beamforming and estimation algorithms, and study efficient distributed resource optimization methods. This book targets signal processing engineers, computer and information scientists, applied mathematicians and statisticians, as well as systems engineers to carve out the role that analytical and experimental engineering has to play in UAV research and development. Undergraduate students, industry managers, government research agency workers and general readers interested in the fields of communications and networks will also want to read this book.
This brief focuses on introducing a novel mathematical framework, referred as hypergraph theory, to model and solve the multiple interferer scenarios for future wireless communication networks. First, in Chap. 1, the authors introduce the basic preliminaries of hypergraph theory in general, and develop two hypergraph based polynomial algorithms, i.e., hypergraph coloring and hypergraph clustering. Then, in Chaps. 2 and 3, the authors present two emerging applications of hypergraph coloring and hypergraph clustering in Device-to-Device (D2D) underlay communication networks, respectively, in order to show the advantages of hypergraph theory compared with the traditional graph theory. Finally, in Chap. 4, the authors discuss the limitations of using hypergraph theory in future wireless networks and briefly present some other potential applications. This brief introduces the state-of-the-art research on the hypergraph theory and its applications in wireless communications. An efficient framework is provided for the researchers, professionals and advanced level students who are interested in the radio resource allocation in the heterogeneous networks to solve the resource allocation and interference management problems.
This brief introduces overlapping coalition formation games (OCF games), a novel mathematical framework from cooperative game theory that can be used to model, design and analyze cooperative scenarios in future wireless communication networks. The concepts of OCF games are explained, and several algorithmic aspects are studied. In addition, several major application scenarios are discussed. These applications are drawn from a variety of fields that include radio resource allocation in dense wireless networks, cooperative spectrum sensing for cognitive radio networks, and resource management for crowd sourcing. For each application, the use of OCF games is discussed in detail in order to show how this framework can be used to solve relevant wireless networking problems. Overlapping Coalition Formation Games in Wireless Communication Networks provides researchers, students and practitioners with a concise overview of existing works in this emerging area, exploring the relevant fundamental theories, key techniques, and significant applications.
This brief focuses on the use of full-duplex radio in cognitive radio networks, presenting a novel spectrum sharing protocol that allows the secondary users to simultaneously sense and access the vacant spectrum. This protocol, called "Listen-and-talk" (LAT), is evaluated by both mathematical analysis and computer simulations in comparison with other existing protocols, including the listen-before-talk protocol. In addition to LAT-based signal processing and resource allocation, the brief discusses techniques such as spectrum sensing and dynamic spectrum access. The brief proposes LAT as a suitable access scheme for cognitive radio networks, which can support the quality-of-service requirements of these high priority applications. Fundamental theories and key techniques of cognitive radio networks are also covered. Listen and Talk: Full-duplex Cognitive Radio Networks is designed for researchers, developers, and professionals involved in cognitive radio networks. Advanced-level students studying signal processing or simulations will also find the content helpful since it moves beyond traditional cognitive radio networks into future applications for the technology.
Most books on network planning and optimization provide limited coverage of either GSM or WCDMA techniques. Few scrape the surface of HSPA, and even fewer deal with TD-SCDMA. Filling this void, Evolved Cellular Network Planning and Optimization for UMTS and LTE presents an accessible introduction to all stages of planning and optimizing UMTS, HSPA, and LTE cellular networks. Supplying a comprehensive explanation of the fundamental aspects of current and future cellular networks, the text starts with an overview of each type of network, including basic techniques and channel models. Next, it examines the challenges operators and vendors are likely to face-explaining the critical role network planning and optimization play in addressing these challenges. The book details effective system-level simulation methods, it also provides: A complete overview of UMTS, HSPA, and LTE networks Techniques for planning and optimizing cellular networks An examination of inter-operation issues with existing cellular networks Coverage of the challenges in deploying LTE and relay networks In addition to exploring the procedures for planning and optimizing each type of network, the text covers techniques for major mechanisms, trending, troubleshooting, and conducting radio performance analysis. Paying special attention to compatibility issues among these networks, this book provides the understanding required to deploy and optimize networks that meet the growing demands for mobile data solutions.
Device-to-Device (D2D) communication will become a key feature supported by next generation cellular networks, a topic of enormous importance to modern communication. Currently, D2D serves as an underlay to the cellular network as a means to increase spectral efficiency. Although D2D communication brings large benefits in terms of system capacity, it also causes interference as well as increased computation complexity to cellular networks as a result of spectrum sharing. Thus, efficient resource management must be performed to guarantee a target performance level of cellular communication. This brief presents the state-of-the-art research on resource management for D2D communication underlaying cellular networks. Those who work with D2D communication will use this book's information to help ensure their work is as efficient as possible. Along with the survey of existing work, this book also includes the fundamental theories, key techniques, and applications.
Supported by the expert-level advice of pioneering researchers, Orthogonal Frequency Division Multiple Access Fundamentals and Applications provides a comprehensive and accessible introduction to the foundations and applications of one of the most promising access technologies for current and future wireless networks. It includes authoritative coverage of the history, fundamental principles, key techniques, and critical design issues of OFDM systems. Covering various techniques of effective resource management for OFDM/OFDMA-based wireless communication systems, this cutting-edge reference:
This valuable resource supplies readers with a macro-level understanding of OFDMA and its key issues, while providing a systematic manual for those whose work is directly related to practical OFDMA and other multiuser communication systems projects.
Supported by the expert-level advice of pioneering researchers, Orthogonal Frequency Division Multiple Access Fundamentals and Applications provides a comprehensive and accessible introduction to the foundations and applications of one of the most promising access technologies for current and future wireless networks. It includes authoritative coverage of the history, fundamental principles, key techniques, and critical design issues of OFDM systems. Covering various techniques of effective resource management for OFDM/OFDMA-based wireless communication systems, this cutting-edge reference: Addresses open problems and supplies possible solutions Provides a concise overview of key techniques for adaptive modulation Investigates radio channel modeling in OFDMA-based wireless communication systems Details detection strategies of frequency-domain equalization for broadband communications Introduces a novel combination of OFDM and the orbital angular momentum of the electromagnetic field to improve performance Contains extensive treatment of adaptive MIMO beamforming suitable for multiuser access This valuable resource supplies readers with a macro-level understanding of OFDMA and its key issues, while providing a systematic manual for those whose work is directly related to practical OFDMA and other multiuser communication systems projects.
Learn about the key technologies and understand the state of the art in research for full-duplex communication networks and systems with this comprehensive and interdisciplinary guide. Incorporating physical, MAC, network, and application layer perspectives, it explains the fundamental theories on which full-duplex communications are built, and lays out the techniques needed for network design, analysis and optimization. Techniques covered in detail include self-interference cancellation and signal processing algorithms, physical layer algorithms, methods for efficient resource allocation, and game theory. Potential applications and networking schemes are discussed, including full-duplex cognitive radio networks, cooperative networks, and heterogeneous networks. The first book to focus exclusively on full-duplex communications, this is an indispensable reference for both researchers and practitioners designing the next generation of wireless networks.
Covering the fundamental theory together with the state of the art in research and development, this practical guide provides the techniques needed to design, analyze, and optimize device-to-device (D2D) communications in wireless networking. With an ever-increasing demand for higher data rate wireless access, D2D communication is set to become a key feature supported by next generation cellular networks. This book introduces D2D-based wireless communications from the physical, MAC, network, and application layer perspectives, providing all the key background information before moving on to discuss real-world applications as well as potential future developments. Key topics are discussed in detail, such as dynamic resource sharing (for example of spectrum and power) between cellular and ad hoc D2D communications to accommodate larger volumes of traffic and provide better service to users. Readers will understand the practical challenges of resource management, optimization, security, standardization, and network topology, and learn how the design principles are applied in practice.
Most books on network planning and optimization provide limited coverage of either GSM or WCDMA techniques. Few scrape the surface of HSPA, and even fewer deal with TD-SCDMA. Filling this void, Evolved Cellular Network Planning and Optimization for UMTS and LTE presents an accessible introduction to all stages of planning and optimizing UMTS, HSPA, and LTE cellular networks. Supplying a comprehensive explanation of the fundamental aspects of current and future cellular networks, the text starts with an overview of each type of network, including basic techniques and channel models. Next, it examines the challenges operators and vendors are likely to face-explaining the critical role network planning and optimization play in addressing these challenges. The book details effective system-level simulation methods, it also provides: A complete overview of UMTS, HSPA, and LTE networks Techniques for planning and optimizing cellular networks An examination of inter-operation issues with existing cellular networks Coverage of the challenges in deploying LTE and relay networks In addition to exploring the procedures for planning and optimizing each type of network, the text covers techniques for major mechanisms, trending, troubleshooting, and conducting radio performance analysis. Paying special attention to compatibility issues among these networks, this book provides the understanding required to deploy and optimize networks that meet the growing demands for mobile data solutions.
|
You may like...
|