Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
The revised and enlarged third edition of this successful book presents a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied and updated applications. In an effort to make the book more useful for a diverse readership, updated modern examples of applications are chosen from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. "Nonlinear Partial Differential Equations for Scientists and Engineers, Third Edition, "improves onanalready highlycomplete and accessible resource for graduate students and professionals in mathematics, physics, science, and engineering. It may be used to great effect as a course textbook, research reference, or self-study guide."
Wave motion in water is one of the most striking observable
phenomena in nature. Throughout the twentieth century, development
of the linearized theory of wave motion in fluids and hydrodynamic
stability has been steady and significant. In the last three
decades there have been remarkable developments in nonlinear
dispersive waves in general, nonlinear water waves in particular,
and nonlinear instability phenomena. New solutions are now
available for waves modulatedin both space and time, which exhibit
new phenomena as diverse as solitons, resonant interactions,
side-band instability, and wave-breaking. Other achievements
include the discovery of soliton interactions, and the Inverse
Scattering Transform method forfinding the explicit exact solution
for several canonical nonlinear partial differential
equations.
Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study and research in the rapidly growing areas of wavelets, wavelet transforms, signal analysis, and signal and image processing. Ideal reference work for advanced students and practitioners in wavelets, and wavelet transforms, signal processing and time-frequency signal analysis. Professionals working in electrical and computer engineering, applied mathematics, computer science, biomedical engineering, physics, optics, and fluid mechanics will also find the book a valuable resource.
This textbook is an introduction to wavelet transforms and accessible to a larger audience with diverse backgrounds and interests in mathematics, science, and engineering. Emphasis is placed on the logical development of fundamental ideas and systematic treatment of wavelet analysis and its applications to a wide variety of problems as encountered in various interdisciplinary areas. Topics and Features: * This second edition heavily reworks the chapters on Extensions of Multiresolution Analysis and Newlands's Harmonic Wavelets and introduces a new chapter containing new applications of wavelet transforms * Uses knowledge of Fourier transforms, some elementary ideas of Hilbert spaces, and orthonormal systems to develop the theory and applications of wavelet analysis * Offers detailed and clear explanations of every concept and method, accompanied by carefully selected worked examples, with special emphasis given to those topics in which students typically experience difficulty * Includes carefully chosen end-of-chapter exercises directly associated with applications or formulated in terms of the mathematical, physical, and engineering context and provides answers to selected exercises for additional help Mathematicians, physicists, computer engineers, and electrical and mechanical engineers will find Wavelet Transforms and Their Applications an exceptionally complete and accessible text and reference. It is also suitable as a self-study or reference guide for practitioners and professionals.
The last two decades have produced tremendous developments in the mathematical theory of wavelets and their great variety of applications in science and engineering. Wavelets allow complex information, such as music, speech, images, and patterns, to be decomposed into an elementary form called building blocks at different positions and scales. The information is reconstructed with high precision. In an effort to acquaint researchers in applied mathematics, physics, statistics, computer science, and engineering and to stimulate further research, a regional research conference was organized at the University of Central Florida in May 1998. Many distinguished applied mathematicians and engineering scientists participated in the conference and presented a digest of recent developments, open questions, and unsolved problems in this rapidly growing and important field. The carefully selected chapters in this new text will appeal to the reader interested in a broad perspective of wavelet analysis and time-frequency signal analysis. Wavelet Transforms and Time-Frequency Signal Analysis brings together recent developments in theory and applications of wavelet transforms that are likely to determine fruitful directions for future advanced study and research. The book is designed as a new source for modern topics dealing with wavelets, wavelet transforms, time-frequency signal analysis, and other applications for future development of this new, important, and useful subject for mathematics, science and engineering. Topics and Features: * Offers broad coverage of recent material on wavelet analysis and time-frequency signal analysis that is not covered in other recent reference books * Provides the reader with a thorough mathematical background and a wide variety of applications that are sufficient for interdisciplinary collaborative research in applied mathematics * Presents information that puts the reader at the forefront of current research Wavelet Transforms and Time-Frequency Signal Analysis will serve as a research reference or as a text for an advanced course in wavelet analysis and time-frequency signal analysis. Professionals working on modern applied mathematics, computer science, computer engineering, electrical engineering, physics, and biomedical engineering will also find this book useful.
One of the most fundamental and active areas in mathematics, the theory of partial differential equations (PDEs) is essential in the modeling of natural phenomena. PDEs have a wide range of interesting and important applications in every branch of applied mathematics, physics, and engineering, including fluid dynamics, elasticity, and optics. This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books, including conservation laws, the spherical wave equation, the cylindrical wave equation, higher-dimensional boundary-value problems, the finite element method, fractional partial differential equations, and nonlinear partial differential equations with applications. Edition will primarily serve as a textbook for the first two courses in PDEs, or in a course on advanced engineering mathematics. The book may also be used as a reference for graduate students, researchers, and professionals in modern applied mathematics, mathematical physics, and engineering. Readers will gain a solid mathematical background in PDEs, sufficient to start interdisciplinary collaborative research in a variety of fields.
In 1934, G. H. Hardy et al. published a book entitled "Inequalities", in which a few theorems about Hilbert-type inequalities with homogeneous kernels of degree-one were considered. Since then, the theory of Hilbert-type discrete and integral inequalities is almost built by Prof. Bicheng Yang in their four published books.This monograph deals with half-discrete Hilbert-type inequalities. By means of building the theory of discrete and integral Hilbert-type inequalities, and applying the technique of Real Analysis and Summation Theory, some kinds of half-discrete Hilbert-type inequalities with the general homogeneous kernels and non-homogeneous kernels are built. The relating best possible constant factors are all obtained and proved. The equivalent forms, operator expressions and some kinds of reverses with the best constant factors are given. We also consider some multi-dimensional extensions and two kinds of multiple inequalities with parameters and variables, which are some extensions of the two-dimensional cases. As applications, a large number of examples with particular kernels are also discussed.The authors have been successful in applying Hilbert-type discrete and integral inequalities to the topic of half-discrete inequalities. The lemmas and theorems in this book provide an extensive account of these kinds of inequalities and operators. This book can help many readers make good progress in research on Hilbert-type inequalities and their applications.
This book primarily serves as a historical research monograph on the biographical sketch and career of Leonhard Euler and his major contributions to numerous areas in the mathematical and physical sciences. It contains fourteen chapters describing Euler's works on number theory, algebra, geometry, trigonometry, differential and integral calculus, analysis, infinite series and infinite products, ordinary and elliptic integrals and special functions, ordinary and partial differential equations, calculus of variations, graph theory and topology, mechanics and ballistic research, elasticity and fluid mechanics, physics and astronomy, probability and statistics.The book is written to provide a definitive impression of Euler's personal and professional life as well as of the range, power, and depth of his unique contributions. This tricentennial tribute commemorates Euler the great man and Euler the universal mathematician of all time. Based on the author's historically motivated method of teaching, special attention is given to demonstrate that Euler's work had served as the basis of research and developments of mathematical and physical sciences for the last 300 years. An attempt is also made to examine his research and its relation to current mathematics and science. Based on a series of Euler's extraordinary contributions, the historical development of many different subjects of mathematical sciences is traced with a linking commentary so that it puts the reader at the forefront of current research.Erratum
Integral Transforms and Their Applications, Third Edition covers advanced mathematical methods for many applications in science and engineering. The book is suitable as a textbook for senior undergraduate and first-year graduate students and as a reference for professionals in mathematics, engineering, and applied sciences. It presents a systematic development of the underlying theory as well as a modern approach to Fourier, Laplace, Hankel, Mellin, Radon, Gabor, wavelet, and Z transforms and their applications. New to the Third Edition New material on the historical development of classical and modern integral transforms New sections on Fourier transforms of generalized functions, the Poisson summation formula, the Gibbs phenomenon, and the Heisenberg uncertainty principle Revised material on Laplace transforms and double Laplace transforms and their applications New examples of applications in mechanical vibrations, electrical networks, quantum mechanics, integral and functional equations, fluid mechanics, mathematical statistics, special functions, and more New figures that facilitate a clear understanding of physical explanations Updated exercises with solutions, tables of integral transforms, and bibliography Through numerous examples and end-of-chapter exercises, this book develops readers' analytical and computational skills in the theory and applications of transform methods. It provides accessible working knowledge of the analytical methods and proofs required in pure and applied mathematics, physics, and engineering, preparing readers for subsequent advanced courses and research in these areas.
Provides a digest of the current developments, open questions and unsolved problems likely to determine a new frontier for future advanced study and research in the rapidly growing areas of wavelets, wavelet transforms, signal analysis, and signal and image processing. Ideal reference work for advanced students and practitioners in wavelets, and wavelet transforms, signal processing and time-frequency signal analysis. Professionals working in electrical and computer engineering, applied mathematics, computer science, biomedical engineering, physics, optics, and fluid mechanics will also find the book a valuable resource.
The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.
The last two decades have produced tremendous developments in the mathematical theory of wavelets and their great variety of applications in science and engineering. Wavelets allow complex information, such as music, speech, images and patterns to be decomposed into an elementary form called 'building blocks' at different positions and scales. The information is reconstructed with high precision. In an effort to acquaint researchers in applied mathematics, physics, statistics, computer science, and engineering and to stimulate further research, a regional research convergence was organized at the University of Central Florida in May 1998. Many distinguished applied mathematicians and engineering scientists participated in the conference and presented a digest of recent developments, open questions and unsolved problems in this rapidly growing and important field. As a follow-up project, this book has developed from chapters written by renowned mathematicians and engineering scientists who have important contribution to the subject of wavelets, wavelet transforms, and time-frequency signal analysis.The carefully selected chapters in this new text will appeal to the reader interested in a broad perspective of wavelet analysis and time- frequency signal analysis. Wavelet Transforms and Time-Frequency Signal Analysis brings together recent developments in theory and applications of wavelet transforms that are likely to determine fruitful directions for future advanced study and research. The book is designed as a new source for modern topics dealing with wavelets, wavelet transforms, time-frequency signal analysis and other applications for future development of this new, important and useful subject for mathematics, science and engineering.
Building on the success of the two previous editions, Introduction
to Hilbert Spaces with Applications, 3E, offers an overview of the
basic ideas and results of Hilbert space theory and functional
analysis. It acquaints students with the Lebesgue integral, and
includes an enhanced presentation of results and proofs. Students
and researchers will benefit from the wealth of revised examples in
new, diverse applications as they apply to optimization,
variational and control problems, and problems in approximation
theory, nonlinear instability, and bifurcation. The text also
includes a popular chapter on wavelets that has been completely
updated. Students and researchers agree that this is the definitive
text on Hilbert Space theory.
This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor. These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before introducing applications and modern topics such as fractional Fourier transforms, windowed canonical transforms, fractional wavelet transforms, fast wavelet transforms, spline wavelets, Daubechies wavelets, harmonic wavelets and non-uniform wavelets. The selection, arrangement, and presentation of the material in these lecture notes have carefully been made based on the authors' teaching, research and professional experience. Drafts of these lecture notes have been used successfully by the authors in their own courses on wavelet transforms and their applications at the University of Texas Pan-American and the University of Kashmir in India.
|
You may like...
|