Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
Inverse problems and optimal design have come of age as a consequence of the availability of better, more accurate, and more efficient simulation packages. Many of these simulators, which can run on small workstations, can capture the complicated behavior of the physical systems they are modeling, and have become commonplace tools in engineering and science. There is a great desire to use them as part of a process by which measured field data are analyzed or by which design of a product is automated. A major obstacle in doing precisely this is that one is ultimately confronted with a large-scale optimization problem. This volume contains expository articles on both inverse problems and design problems formulated as optimization. Each paper describes the physical problem in some detail and is meant to be accessible to researchers in optimization as well as those who work in applied areas where optimization is a key tool. What emerges in the presentations is that there are features about the problem that must be taken into account in posing the objective function, and in choosing an optimization strategy. In particular there are certain structures peculiar to the problems that deserve special treatment, and there is ample opportunity for parallel computation. THIS IS BACK COVER TEXT Inverse problems and optimal design have come of age as a consequence of the availability of better, more accurate, and more efficient, simulation packages. The problem of determining the parameters of a physical system from
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.
|
You may like...
|