0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Asymptotic Differential Algebra and Model Theory of Transseries - (AMS-195) (Paperback): Matthias Aschenbrenner, Lou Van Den... Asymptotic Differential Algebra and Model Theory of Transseries - (AMS-195) (Paperback)
Matthias Aschenbrenner, Lou Van Den Dries, Joris van der Hoeven
R1,824 Discovery Miles 18 240 Ships in 12 - 17 working days

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.

Model Theory in Algebra, Analysis and Arithmetic - Cetraro, Italy 2012, Editors: H. Dugald Macpherson, Carlo Toffalori... Model Theory in Algebra, Analysis and Arithmetic - Cetraro, Italy 2012, Editors: H. Dugald Macpherson, Carlo Toffalori (Paperback, 2014 ed.)
Lou Van Den Dries, Jochen Koenigsmann, H. Dugald Macpherson, Anand Pillay, Carlo Toffalori, …
R2,351 Discovery Miles 23 510 Ships in 10 - 15 working days

The book describes 4 main topics in current model theory and updates their most recent development and applications. The 4 topics are: 1) model theory of valued fields; 2) undecidability in arithmetic; 3) NIP theories; 4) model theory of real and complex exponentiation. The book addresses in particular young researchers in model theory, as well as more senior researchers in other branches of mathematics.

Asymptotic Differential Algebra and Model Theory of Transseries - (AMS-195) (Hardcover): Matthias Aschenbrenner, Lou Van Den... Asymptotic Differential Algebra and Model Theory of Transseries - (AMS-195) (Hardcover)
Matthias Aschenbrenner, Lou Van Den Dries, Joris van der Hoeven
R3,795 Discovery Miles 37 950 Ships in 12 - 17 working days

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Mercury: Act 1
Imagine Dragons CD R64 Discovery Miles 640
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Odell On Square Rose, Brushed Satin…
R430 Discovery Miles 4 300
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Seagull Clear Storage Box (29lt)
R241 Discovery Miles 2 410
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Joseph Joseph Index Mini (Graphite)
R642 Discovery Miles 6 420
Cricut 13 Inch Essential Tool Set (7…
R1,729 R749 Discovery Miles 7 490

 

Partners