![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
This book describes load modeling approaches for complex work pieces and batch forgings, and demonstrates analytical modeling and data-driven modeling approaches for known and unknown complex forging processes. It overcomes the current shortcomings of modeling, analysis and control approaches, presenting contributions in three major areas: In the first, several novel modeling approaches are proposed: a process/shape-decomposition modeling method to help estimate the deformation force; an online probabilistic learning machine for the modeling of batch forging processes; and several data-driven identification and modeling approaches for unknown forging processes under different work conditions. The second area develops model-based dynamic analysis methods to derive the conditions of stability and creep. Lastly, several novel intelligent control methods are proposed for complex forging processes. One of the most serious problems in forging forming involves the inaccurate forging conditions, velocity and position offered by the hydraulic actuator due to the complexity of both the deformation process of the metal work piece and the motion process of the hydraulic actuator. The book summarizes the current weaknesses of modeling, analysis and control approaches. are summarized as follows: a) With the current modeling approaches it is difficult to model complex forging processes with unknown parameters, as they only model the dynamics in local working areas but do not effectively model unknown nonlinear systems across multiple working areas; further, they do not take the batch forging process into account, let alone its distribution modeling. b) All previous dynamic analysis studies simplify the forging system to having a single-frequency pressure fluctuation and neglect the influences of non-linear load force. Further, they fail to take the flow equation in both valves and cylinders into account. c) Conventional control approaches only consider the linear deformation force and pay no attention to sudden changes and the motion synchronization for the multi-cylinder system, making them less effective for complex, nonlinear time-varying forging processes subject to sudden changes.
Three thirty-year-old friends reunite in Beijing after nearly 10 years apart. They used to be free-wheeling rock-and-rollers without a care in the world, but now, after tasting their own variation of freedom in new China, they are tormented by how unforgiving and unglamorous life had become. Nothing at all like the fame and fortune they dreamed about as kids. After comparing stories of disappointment over beers, they are reminded of how much youth they've lost when a group of kids torments them into a brawl. Re-energized by the encounter, they decide to reform the band and this time take over the world. But reality gets in the way when one of them finds out his family is going to be evicted along with their whole neighborhood due to shady government zoning. Putting their dreams aside to fight for their rightful property, they find themselves in a violent uprising pitting neighborhood residents against police and bulldozers... And when the heat gets turned up high enough, fuses are bound to be lit... A story of youthful dreams clashing with the reality of adulthood, set against the backdrop of modern China.
This book describes load modeling approaches for complex work pieces and batch forgings, and demonstrates analytical modeling and data-driven modeling approaches for known and unknown complex forging processes. It overcomes the current shortcomings of modeling, analysis and control approaches, presenting contributions in three major areas: In the first, several novel modeling approaches are proposed: a process/shape-decomposition modeling method to help estimate the deformation force; an online probabilistic learning machine for the modeling of batch forging processes; and several data-driven identification and modeling approaches for unknown forging processes under different work conditions. The second area develops model-based dynamic analysis methods to derive the conditions of stability and creep. Lastly, several novel intelligent control methods are proposed for complex forging processes. One of the most serious problems in forging forming involves the inaccurate forging conditions, velocity and position offered by the hydraulic actuator due to the complexity of both the deformation process of the metal work piece and the motion process of the hydraulic actuator. The book summarizes the current weaknesses of modeling, analysis and control approaches. are summarized as follows: a) With the current modeling approaches it is difficult to model complex forging processes with unknown parameters, as they only model the dynamics in local working areas but do not effectively model unknown nonlinear systems across multiple working areas; further, they do not take the batch forging process into account, let alone its distribution modeling. b) All previous dynamic analysis studies simplify the forging system to having a single-frequency pressure fluctuation and neglect the influences of non-linear load force. Further, they fail to take the flow equation in both valves and cylinders into account. c) Conventional control approaches only consider the linear deformation force and pay no attention to sudden changes and the motion synchronization for the multi-cylinder system, making them less effective for complex, nonlinear time-varying forging processes subject to sudden changes.
|
You may like...
Call Sign Chaos - Learning To Lead
Jim Mattis, Bing West
Hardcover
(1)
Rogue - The Inside Story Of SARS's Elite…
Johann van Loggerenberg, Adrian Lackay
Paperback
(2)R245 Discovery Miles 2 450
|