Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This book presents recent advances in the field of computational coupling and contact mechanics with particular emphasis on numerical formulations and methodologies necessary to solve advanced engineering applications.Featuring contributions from leading experts and active researchers in these fields who provide a detailed overview of different modern numerical schemes that can be considered by main numerical methodologies to simulate interaction problems in continuum mechanics.A number of topics are addressed, including formulations based on the finite element method (FEM) and their variants (e.g. isogeometric analysis or standard and generalized high-order FEM: hp-FEM and GFEM, respectively), the boundary element method (BEM), the material point method (MPM) or the recently proposed finite block method (FBM), among many more.Written with PhD students in mind, Advances in Computational Coupling and Contact Mechanics also includes the most recent numerical techniques which could be served as reference material for researchers and practicing engineers. All chapters are self-contained and can be read independently, with numerical formulations accompanied by practical engineering applications.Related Link(s)
Wear is one of the main reasons mechanical components and materials become inoperable, rendering enormous costs to society over time. Estimating wear allows engineers to predict the useful life of modern mechanical elements, reduce the costs of inoperability, or obtain optimal designs (i.e. selecting proper materials, shapes, and surface finishing according to mechanical conditions and durability) to reduce the impact of wear.Wear in Advanced Engineering Applications and Materials presents recent computational and practical research studying damage and wear in advanced engineering applications and materials. As such, this book covers numerical formulations based on the finite element method (FEM) - and the boundary element method (BEM) - as well as theoretical and experimental research to predict the wear response or life-limiting failure of engineering applications.
|
You may like...
|