Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
Make the best use of available water for your crops Water Use in Crop Production explores innovative methods that determine how much water certain crops need, in certain climates, in order to ensure adequate plant growth and help eliminate water waste. Through this informative book, agronomists, growers, researchers, and graduate students will find methods and techniques for effective water management that will save money and conserve water. Water Use in Crop Production will enable you enhance crop quality and quantity and save one of the earth's most important resource.Comprehensive and thorough, this essential book combines two vital needs, food and water, and examines what must be done in order to keep up with the ever-growing human population. Explaining conservation techniques used in Argentina, Australia, Israel, Morocco, New Zealand, the Philippines, Spain, and the United States, Water Use in Crop Production will help you achieve this goal as it discusses water management measures including: avoiding excessive deep percolation reducing runoff lessening water evaporation through methods such as reducing the capillary water flow to the surface of the soil determining the rates at which water is demanded and can be supplied in a specific area to create a plan for limiting water loss studying the root structure of plants to calculate how much water they need using deficit irrigation to help plants save water for future use evaluating citrus water use through the Penman-Monteith model Containing charts, tables, and examples of the concepts it discusses, this book is the culmination of the latest studies on water storage. Water Use in Crop Production provides you with reliable strategies and methods that will help you lessen water expenditures and improve the vitality of crops anywhere in the world.
Identifying, interpreting, and managing soil constraints are major challenges, especially when multiple constraints occur in the same soil at various depth zones. Although amelioration tools and strategies are available to manage some of these constraints, field adoption of these technologies is a major challenge to the farming community. Soil Constraints and Productivity helps in identifying and understanding soil constraints, focusing on management practices to alleviate problems associated with these restrictions, and their impacts on crop productivity. Soil Constraints and Productivity aims to: * Describe various amendments suitable for mitigating soil constraints * Provide data on cost-benefit analysis of managing soil constraints * Provide case studies of managing soil constraints to increase productivity Soil is essential for the doubling of major grain production proposed to be necessary to avoid major food security collapses in the future. This book will be a key resource for soil and environmental scientists, farmers, students majoring in agricultural and environmental sciences, and crop consultants.
Spoil to Soil: Mine Site Rehabilitation and Revegetation presents both fundamental and practical aspects of remediation and revegetation of mine sites. Through three major themes, it examines characterization of mine site spoils; remediation of chemical, physical and biological constraints of mine site spoils, including post mine-site land-use practices; and revegetation of remediated mine site spoils. Each theme includes chapters featuring case studies involving mine sites around the world. The final section focuses specifically on case studies with successful mine site rehabilitation. The book provides a narrative of how inert spoil can be converted to live soil. Instructive illustrations show mine sites before and after rehabilitation. The purpose of this book is to provide students, scientists, and professional personnel in the mining industry sensible, science-based information needed to rehabilitate sustainably areas disturbed by mining activities. This book is suitable for undergraduate and graduate students majoring in environmental, earth, and soil sciences; environmental and soil scientists; and mine site environmental engineers and regulators.
The manufacture of plastic as well as its indiscriminate disposal and destruction by incineration pollutes atmospheric, terrestrial, and aquatic ecosystems. Synthetic plastics do not break down; they accumulate in the environment as macro-, micro-, and nanoplastics. These particulate plastics are a major source of pollutants in soil and marine ecosystems. Particulate Plastics in Terrestrial and Aquatic Environments provides a fundamental understanding of the sources of these plastics and the threats they pose to the environment. The book demonstrates the ecotoxicity of particulate plastics using case studies and offers management practices to mitigate particulate plastic contamination in the environment. Features * Describes physical and chemical properties of particulate plastics in terrestrial and aquatic ecosystems * Presents information on characteristics of particulate plastics as impacted by weathering processes * Provides numerous approaches for managing particulate plastic contamination * Identifies sources of particulate plastics in the environment; distribution and characteristics of particulate plastics; and management strategies of particulate plastics Written by a global team of scientists, this book is for researchers in the fields of environmental safety and waste management or individuals interested in the impact of particulate plastics on environmental health.
Between 1958 and 2008, the CO2 concentration in the atmosphere increased from 316 to 385 ppm. Continued increases in CO2 concentration will significantly affect long-term climate change, including variations in agricultural yields. Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2. It describes specific results from pioneering experiments performed over a seven-year period in the Evapotranspiration Laboratory at Kansas State University, along with experiments appearing in peer-reviewed journal articles. Select articles from the literature serve as examples in the text. For each paper discussed, the author includes the common and scientific name of the plant under investigation. For each experiment, the author provides the type of soil used (if given in the original article) and general conditions of the experiment. All references are carefully documented so that readers can easily find the original source. The first chapter of the book deals with drought, the three types of photosynthesis, and how water moves through the soil-plant-atmosphere continuum. With a focus on soil, the next several chapters discuss the composition of the soil atmosphere, the interaction of elevated CO2 with physical factors that affect root growth, variable oxygen concentration of soil, and when the atmosphere above soil is elevated with CO2. The author goes on to examine the use of carbon isotope ratios in plant science; the effects of elevated CO2 on plant water, osmotic, and turgor potentials; and stomata under elevated CO2, including stomatal conductance and density. The text also explains the effects of elevated CO2 on transpiration and evapotranspiration, explores historic
The manufacture of plastic as well as its indiscriminate disposal and destruction by incineration pollutes atmospheric, terrestrial, and aquatic ecosystems. Synthetic plastics do not break down; they accumulate in the environment as macro-, micro-, and nanoplastics. These particulate plastics are a major source of pollutants in soil and marine ecosystems. Particulate Plastics in Terrestrial and Aquatic Environments provides a fundamental understanding of the sources of these plastics and the threats they pose to the environment. The book demonstrates the ecotoxicity of particulate plastics using case studies and offers management practices to mitigate particulate plastic contamination in the environment. Features * Describes physical and chemical properties of particulate plastics in terrestrial and aquatic ecosystems * Presents information on characteristics of particulate plastics as impacted by weathering processes * Provides numerous approaches for managing particulate plastic contamination * Identifies sources of particulate plastics in the environment; distribution and characteristics of particulate plastics; and management strategies of particulate plastics Written by a global team of scientists, this book is for researchers in the fields of environmental safety and waste management or individuals interested in the impact of particulate plastics on environmental health.
Principles of Soil and Plant Water Relations, Third Edition describes the fundamental principles of soil and water relationships in relation to water storage in soil and water uptake by plants. The book explains why it is important to know about soil-plant-water relations, with subsequent chapters providing the definition of all physical units and the SI system and dealing with the structure of water and its special properties. Final sections explain the structure of plants and the mechanisms behind their interrelationships, especially the mechanism of water uptake and water flow within plants and how to assess parameters. All chapters begin with a brief paragraph about why the topic is important and include all formulas necessary to calculate respective parameters. This third edition includes a new chapter on water relations of plants and soils in space as well as textbook problems and answers.
Between 1958 and 2008, the CO2 concentration in the atmosphere increased from 316 to 385 ppm. Continued increases in CO2 concentration will significantly affect long-term climate change, including variations in agricultural yields. Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2. It describes specific results from pioneering experiments performed over a seven-year period in the Evapotranspiration Laboratory at Kansas State University, along with experiments appearing in peer-reviewed journal articles. Select articles from the literature serve as examples in the text. For each paper discussed, the author includes the common and scientific name of the plant under investigation. For each experiment, the author provides the type of soil used (if given in the original article) and general conditions of the experiment. All references are carefully documented so that readers can easily find the original source. The first chapter of the book deals with drought, the three types of photosynthesis, and how water moves through the soil-plant-atmosphere continuum. With a focus on soil, the next several chapters discuss the composition of the soil atmosphere, the interaction of elevated CO2 with physical factors that affect root growth, variable oxygen concentration of soil, and when the atmosphere above soil is elevated with CO2. The author goes on to examine the use of carbon isotope ratios in plant science; the effects of elevated CO2 on plant water, osmotic, and turgor potentials; and stomata under elevated CO2, including stomatal conductance and density. The text also explains the effects of elevated CO2 on transpiration and evapotranspiration, explores historical aspects of water use efficiency, compares C3 and C4 plants under elevated CO2, and details the advantages of C4 photosynthes
Spoil to Soil: Mine Site Rehabilitation and Revegetation presents both fundamental and practical aspects of remediation and revegetation of mine sites. Through three major themes, it examines characterization of mine site spoils; remediation of chemical, physical and biological constraints of mine site spoils, including post mine-site land-use practices; and revegetation of remediated mine site spoils. Each theme includes chapters featuring case studies involving mine sites around the world. The final section focuses specifically on case studies with successful mine site rehabilitation. The book provides a narrative of how inert spoil can be converted to live soil. Instructive illustrations show mine sites before and after rehabilitation. The purpose of this book is to provide students, scientists, and professional personnel in the mining industry sensible, science-based information needed to rehabilitate sustainably areas disturbed by mining activities. This book is suitable for undergraduate and graduate students majoring in environmental, earth, and soil sciences; environmental and soil scientists; and mine site environmental engineers and regulators.
"Principles of Soil and Plant Water Relations, 2e" describes the
principles of water relations within soils, followed by the uptake
of water and its subsequent movement throughout and from the plant
body. This is presented as a progressive series of physical and
biological interrelations, even though each topic is treated in
detail on its own. The book also describes equipment used to
measure water in the soil-plant-atmosphere system. At the end of
each chapter is a biography of a scientist whose principles are
discussed in the chapter. In addition to new information on the
concept of celestial time, this new edition also includes new
chapters on methods to determine sap flow in plants dual-probe
heat-pulse technique to monitor water in the root zone.
Principles of Soil and Plant Water Relations combines biology and
physics to show how water moves through the soil-plant-atmosphere
continuum. This text explores the instrumentation and the methods
used to measure the status of water in soil and plants. The basic
methods of tensiometry, pyschrometry, stomatal porometry, as well
as newer methods of tension infiltrometry; time domain
reflectometry are examined. Principles are clearly presented with
the aid of diagrams, anatomical figures, and images of
instrumentation. An added feature includes short biographies of
important scientists at the end of each chapter.
|
You may like...
|