Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.
Fundamentals of Convex Analysis offers an in-depth look at some of the fundamental themes covered within an area of mathematical analysis called convex analysis. In particular, it explores the topics of duality, separation, representation, and resolution. The work is intended for students of economics, management science, engineering, and mathematics who need exposure to the mathematical foundations of matrix games, optimization, and general equilibrium analysis. It is written at the advanced undergraduate to beginning graduate level and the only formal preparation required is some familiarity with set operations and with linear algebra and matrix theory. Fundamentals of Convex Analysis is self-contained in that a brief review of the essentials of these tool areas is provided in Chapter 1. Chapter exercises are also provided. Topics covered include: convex sets and their properties; separation and support theorems; theorems of the alternative; convex cones; dual homogeneous systems; basic solutions and complementary slackness; extreme points and directions; resolution and representation of polyhedra; simplicial topology; and fixed point theorems, among others. A strength of this work is how these topics are developed in a fully integrated fashion.
Features recent trends and advances in the theory and techniques used to accurately measure and model growth Growth Curve Modeling: Theory and Applications features an accessible introduction to growth curve modeling and addresses how to monitor the change in variables over time since there is no one size fits all approach to growth measurement. A review of the requisite mathematics for growth modeling and the statistical techniques needed for estimating growth models are provided, and an overview of popular growth curves, such as linear, logarithmic, reciprocal, logistic, Gompertz, Weibull, negative exponential, and log-logistic, among others, is included. In addition, the book discusses key application areas including economic, plant, population, forest, and firm growth and is suitable as a resource for assessing recent growth modeling trends in the medical field. SAS(R) is utilized throughout to analyze and model growth curves, aiding readers in estimating specialized growth rates and curves. Including derivations of virtually all of the major growth curves and models, Growth Curve Modeling: Theory and Applications also features: Statistical distribution analysis as it pertains to growth modeling Trend estimations Dynamic site equations obtained from growth models Nonlinear regression Yield-density curves Nonlinear mixed effects models for repeated measurements data Growth Curve Modeling: Theory and Applications is an excellent resource for statisticians, public health analysts, biologists, botanists, economists, and demographers who require a modern review of statistical methods for modeling growth curves and analyzing longitudinal data. The book is also useful for upper-undergraduate and graduate courses on growth modeling.
Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.
Fundamentals of Convex Analysis offers an in-depth look at some of the fundamental themes covered within an area of mathematical analysis called convex analysis. In particular, it explores the topics of duality, separation, representation, and resolution. The work is intended for students of economics, management science, engineering, and mathematics who need exposure to the mathematical foundations of matrix games, optimization, and general equilibrium analysis. It is written at the advanced undergraduate to beginning graduate level and the only formal preparation required is some familiarity with set operations and with linear algebra and matrix theory. Fundamentals of Convex Analysis is self-contained in that a brief review of the essentials of these tool areas is provided in Chapter 1. Chapter exercises are also provided. Topics covered include: convex sets and their properties; separation and support theorems; theorems of the alternative; convex cones; dual homogeneous systems; basic solutions and complementary slackness; extreme points and directions; resolution and representation of polyhedra; simplicial topology; and fixed point theorems, among others. A strength of this work is how these topics are developed in a fully integrated fashion.
Guides in the application of linear programming to firm decision making, with the goal of giving decision-makers a better understanding of methods at their disposal Useful as a main resource or as a supplement in an economics or management science course, this comprehensive book addresses the deficiencies of other texts when it comes to covering linear programming theory--especially where data envelopment analysis (DEA) is concerned--and provides the foundation for the development of DEA. Linear Programming and Resource Allocation Modeling begins by introducing primal and dual problems via an optimum product mix problem, and reviews the rudiments of vector and matrix operations. It then goes on to cover: the canonical and standard forms of a linear programming problem; the computational aspects of linear programming; variations of the standard simplex theme; duality theory; single- and multiple- process production functions; sensitivity analysis of the optimal solution; structural changes; and parametric programming. The primal and dual problems are then reformulated and re-examined in the context of Lagrangian saddle points, and a host of duality and complementary slackness theorems are offered. The book also covers primal and dual quadratic programs, the complementary pivot method, primal and dual linear fractional functional programs, and (matrix) game theory solutions via linear programming, and data envelopment analysis (DEA). This book: Appeals to those wishing to solve linear optimization problems in areas such as economics, business administration and management, agriculture and energy, strategic planning, public decision making, and health care Fills the need for a linear programming applications component in a management science or economics course Provides a complete treatment of linear programming as applied to activity selection and usage Contains many detailed example problems as well as textual and graphical explanations Linear Programming and Resource Allocation Modeling is an excellent resource for professionals looking to solve linear optimization problems, and advanced undergraduate to beginning graduate level management science or economics students.
A beginner s guide to stochastic growth modeling The chief advantage of stochastic growth models over deterministic models is that they combine both deterministic and stochastic elements of dynamic behaviors, such as weather, natural disasters, market fluctuations, and epidemics. This makes stochastic modeling a powerful tool in the hands of practitioners in fields for which population growth is a critical determinant of outcomes. However, the background requirements for studying SDEs can be daunting for those who lack the rigorous course of study received by math majors. Designed to be accessible to readers who have had only a few courses in calculus and statistics, this book offers a comprehensive review of the mathematical essentials needed to understand and apply stochastic growth models. In addition, the book describes deterministic and stochastic applications of population growth models including logistic, generalized logistic, Gompertz, negative exponential, and linear. Ideal for students and professionals in an array of fields including economics, population studies, environmental sciences, epidemiology, engineering, finance, and the biological sciences, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: Provides precise definitions of many important terms and concepts and provides many solved example problems Highlights the interpretation of results and does not rely on a theorem-proof approach Features comprehensive chapters addressing any background deficiencies readers may have and offers a comprehensive review for those who need a mathematics refresher Emphasizes solution techniques for SDEs and their practical application to the development of stochastic population models An indispensable resource for students and practitioners with limited exposure to mathematics and statistics, Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling is an excellent fit for advanced undergraduates and beginning graduate students, as well as practitioners who need a gentle introduction to SDEs. Michael J. Panik, PhD, is Professor in the Department of Economics, Barney School of Business and Public Administration at the University of Hartford in Connecticut. He received his PhD in Economics from Boston College and is a member of the American Mathematical Society, The American Statistical Association, and The Econometric Society.
|
You may like...
Mindfulness for a Happy Life
Robert Beatty, Laura Musikanski
Hardcover
|