Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
In his 1974 seminal paper 'Elliptic modules', V G Drinfeld introduced objects into the arithmetic geometry of global function fields which are nowadays known as 'Drinfeld Modules'. They have many beautiful analogies with elliptic curves and abelian varieties. They study of their moduli spaces leads amongst others to explicit class field theory, Jacquet-Langlands theory, and a proof of the Shimura-Taniyama-Weil conjecture for global function fields.This book constitutes a carefully written instructional course of 12 lectures on these subjects, including many recent novel insights and examples. The instructional part is complemented by research papers centering around class field theory, modular forms and Heegner points in the theory of global function fields.The book will be indispensable for everyone who wants a clear view of Drinfeld's original work, and wants to be informed about the present state of research in the theory of arithmetic geometry over function fields.
This volume is the record of a workshop on differential equations and the Stokes phenomenon, held in May 2001 at the University of Groningen. It contains expanded versions of most of the lectures given at the workshop. To a large extent, both the workshop and the book may he regarded as a sequel to a conference held in Groningen in 1995 which resulted in the book The Stokes Phenomenon and Hilbert's 16th Problem (B L J Braaksma, G K Immink and M van der Put, editors), also published by World Scientific (1996). Both books offer a snapshot concerning the state of the art in the areas of differential, difference and q-difference equations. Apart from the asymptotics of solutions, Painleve properties and the algebraic theory, new topics addressed in the second book include arithmetic theory of linear equations, and Galois theory and Lie symmetries of nonlinear differential equations.
|
You may like...
|