Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
The book presents homogeneous solutions in static and dynamical problems of anisotropic theory of elasticity, which are constructed for a hollow cylinder. It also offers an asymptotic process for finding frequencies of natural vibrations of a hollow cylinder, and establishes a qualitative study of several applied theories of the boundaries of applicability. Further the authors develop a general theory for a transversally isotropic spherical shell, which includes methods for constructing inhomogeneous and homogeneous solutions that allow the characteristic features of the stress-strain state of an anisotropic spherical shell to be revealed. Lastly, the book introduces an asymptotic method for integrating the equations of anisotropic theory of elasticity in variable thickness plates and shells. Based on the results of the author and researchers at Baku State University and the Institute of Mathematics and Mechanics, ANAS, the book is intended for specialists in the field of theory of elasticity, theory of plates and shells, and applied mathematics.
This book focuses on the justification and refinement of highly diverse approximate dynamic models for engineering structures arising in modern technology, including high-tech domains involving nano- and meta-materials. It proposes a classification for vibration spectra over a broad frequency domain and evaluates the range of validity of various existing 2D theories for thin-walled shells by comparing them with 3D benchmark solutions. The dynamic equations in 3D elasticity are applied to the analysis of harmonic vibrations in hollow bodies with canonical shapes. New exact homogeneous and inhomogeneous solutions are derived for cylinders, spheres and cones (including spherical and conical layers), as well as for plates of variable thickness. The book includes a wealth of numerical examples, as well as refined versions of 2D dynamic formulations. Boundary value problems for hollow bodies are also addressed.
This book focuses on the justification and refinement of highly diverse approximate dynamic models for engineering structures arising in modern technology, including high-tech domains involving nano- and meta-materials. It proposes a classification for vibration spectra over a broad frequency domain and evaluates the range of validity of various existing 2D theories for thin-walled shells by comparing them with 3D benchmark solutions. The dynamic equations in 3D elasticity are applied to the analysis of harmonic vibrations in hollow bodies with canonical shapes. New exact homogeneous and inhomogeneous solutions are derived for cylinders, spheres and cones (including spherical and conical layers), as well as for plates of variable thickness. The book includes a wealth of numerical examples, as well as refined versions of 2D dynamic formulations. Boundary value problems for hollow bodies are also addressed.
|
You may like...
|