Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Modelling in polymer materials science has experienced a dramatic
growth in the last two decades. Advances in modeling methodologies
together with rapid growth in computational power have made it
possible to address increasingly complex questions both of a
fundamental and of a more applied nature.
This textbook presents all the mathematical and physical concepts needed to visualize and understand representation surfaces, providing readers with a reliable and intuitive understanding of the behavior and properties of anisotropic materials, and a sound grasp of the directionality of material properties. They will learn how to extract quantitative information from representation surfaces, which encode tremendous amounts of information in a very concise way, making them especially useful in understanding higher order tensorial material properties (piezoelectric moduli, elastic compliance and rigidity, etc.) and in the design of applications based on these materials. Readers will also learn from scratch concepts on crystallography, symmetry and Cartesian tensors, which are essential for understanding anisotropic materials, their design and application. The book describes how to apply representation surfaces to a diverse range of material properties, making it a valuable resource for material scientists, mechanical engineers, and solid state physicists, as well as advanced undergraduates in Materials Science, Solid State Physics, Electronics, Optics, Mechanical Engineering, Composites and Polymer Science. Moreover, the book includes a wealth of worked-out examples, problems and exercises to help further understanding.
CIARP 2005 (10th Iberoamerican Congress on Pattern Recognition, X CIARP) is the 10th event in the series of pioneer congresses on pattern recognition in the Iberoamerican community, which takes place in La Habana, Cuba. As in previous years, X CIARP brought together international scientists to promote and disseminate ongoing research and mathematical methods for pattern recognition, image analysis, and applications in such diverse areas as computer vision, robotics, industry, health, entertainment, space exploration, telecommunications, data mining, document analysis, and natural language processing and recognition, to name a few. Moreover, X CIARP was a forum for scientific research, experience exchange, share of new knowledge and increase in cooperation between research groups in pattern recognition, computer vision and related areas. The 10th Iberoamerican Congress on Pattern Recognition was organized by the Cuban Association for Pattern Recognition (ACRP) and sponsored by the Institute of Cybernetics, Mathematics and Physics (ICIMAF), the Advanced Technologies Application Center (CENATAV), the University of Oriente (UO), the Polytechnic Institute "Jose A Echevarria" (ISPJAE), the Central University of Las Villas (UCLV), the Ciego de Avila University (UNICA), as well as the Center of Technologies Research on Information and Systems (CITIS-UAEH) in Mexico. The conference was also co-sponsored by the Portuguese Association for Pattern Recognition (APRP), the Spanish Association for Pattern Recognition and Image Analysis (AERFAI), the Special Interest Group of the Brazilian Computer Society (SIGPR-SBC), and the Mexican Association for Computer Vision, Neurocomputing and Robotics (MACVNR). X CIARP was endorsed by the International Association for Pattern Recognition (IAPR).
This textbook presents all the mathematical and physical concepts needed to visualize and understand representation surfaces, providing readers with a reliable and intuitive understanding of the behavior and properties of anisotropic materials, and a sound grasp of the directionality of material properties. They will learn how to extract quantitative information from representation surfaces, which encode tremendous amounts of information in a very concise way, making them especially useful in understanding higher order tensorial material properties (piezoelectric moduli, elastic compliance and rigidity, etc.) and in the design of applications based on these materials. Readers will also learn from scratch concepts on crystallography, symmetry and Cartesian tensors, which are essential for understanding anisotropic materials, their design and application. The book describes how to apply representation surfaces to a diverse range of material properties, making it a valuable resource for material scientists, mechanical engineers, and solid state physicists, as well as advanced undergraduates in Materials Science, Solid State Physics, Electronics, Optics, Mechanical Engineering, Composites and Polymer Science. Moreover, the book includes a wealth of worked-out examples, problems and exercises to help further understanding.
|
You may like...
|