![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This is a textbook which gradually introduces the student to the statistical mechanical study of the different phases of matter and to the phase transitions between them. Throughout, only simple models of both ordinary and soft matter are used but these are studied in full detail. The subject is developed in a pedagogical manner, starting from the basics, going from the simple ideal systems to the interacting systems, and ending with the more modern topics. The textbook provides the student with a complete overview, intentionally at an introductory level, of the theory of phase transitions. All equations and deductions are included.
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.
Observation, Prediction and Simulation of Phase Transitions in Complex Fluids presents an overview of the phase transitions that occur in a variety of soft-matter systems: colloidal suspensions of spherical or rod-like particles and their mixtures, directed polymers and polymer blends, colloid--polymer mixtures, and liquid-forming mesogens. This modern and fascinating branch of condensed matter physics is presented from three complementary viewpoints. The first section, written by experimentalists, emphasises the observation of basic phenomena (by light scattering, for example). The second section, written by theoreticians, focuses on the necessary theoretical tools (density functional theory, path integrals, free energy expansions). The third section is devoted to the results of modern simulation techniques (Gibbs ensemble, free energy calculations, configurational bias Monte Carlo). The interplay between the disciplines is clearly illustrated. For all those interested in modern research in equilibrium statistical mechanics.
This is a textbook which gradually introduces the student to the statistical mechanical study of the different phases of matter and to the phase transitions between them. Throughout, only simple models of both ordinary and soft matter are used but these are studied in full detail. The subject is developed in a pedagogical manner, starting from the basics, going from the simple ideal systems to the interacting systems, and ending with the more modern topics. The textbook provides the student with a complete overview, intentionally at an introductory level, of the theory of phase transitions. All equations and deductions are included.
|
![]() ![]() You may like...
Revealing Revelation - How God's Plans…
Amir Tsarfati, Rick Yohn
Paperback
![]()
|