0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

The Automated Design of Materials Far From Equilibrium (Paperback, Softcover reprint of the original 1st ed. 2016): Marc Z.... The Automated Design of Materials Far From Equilibrium (Paperback, Softcover reprint of the original 1st ed. 2016)
Marc Z. Miskin
R3,248 Discovery Miles 32 480 Ships in 10 - 15 working days

This thesis conceptualizes and implements a new framework for designing materials that are far from equilibrium. Starting with state-of-the-art optimization engines, it describes an automated system that makes use of simulations and 3D printing to find the material that best performs a user-specified goal. Identifying which microscopic features produce a desired macroscopic behavior is a problem at the forefront of materials science. This task is materials design, and within it, new goals and challenges have emerged from tailoring the response of materials far from equilibrium. These materials hold promising properties such as robustness, high strength, and self-healing. Yet without a general theory to predict how these properties emerge, designing and controlling them presents a complex and important problem. As proof of concept, the thesis shows how to design the behavior of granular materials, i.e., collections of athermal, macroscopic identical objects, by identifying the particle shapes that form the stiffest, softest, densest, loosest, most dissipative and strain-stiffening aggregates. More generally, the thesis shows how these results serve as prototypes for problems at the heart of materials design, and advocates the perspective that machines are the key to turning complex material forms into new material functions.

The Automated Design of Materials Far From Equilibrium (Hardcover, 1st ed. 2016): Marc Z. Miskin The Automated Design of Materials Far From Equilibrium (Hardcover, 1st ed. 2016)
Marc Z. Miskin
R2,957 Discovery Miles 29 570 Ships in 10 - 15 working days

This thesis conceptualizes and implements a new framework for designing materials that are far from equilibrium. Starting with state-of-the-art optimization engines, it describes an automated system that makes use of simulations and 3D printing to find the material that best performs a user-specified goal. Identifying which microscopic features produce a desired macroscopic behavior is a problem at the forefront of materials science. This task is materials design, and within it, new goals and challenges have emerged from tailoring the response of materials far from equilibrium. These materials hold promising properties such as robustness, high strength, and self-healing. Yet without a general theory to predict how these properties emerge, designing and controlling them presents a complex and important problem. As proof of concept, the thesis shows how to design the behavior of granular materials, i.e., collections of athermal, macroscopic identical objects, by identifying the particle shapes that form the stiffest, softest, densest, loosest, most dissipative and strain-stiffening aggregates. More generally, the thesis shows how these results serve as prototypes for problems at the heart of materials design, and advocates the perspective that machines are the key to turning complex material forms into new material functions.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Hermes Le Jardin De Monsieur Li Eau De…
R2,614 R1,409 Discovery Miles 14 090
JCB Chelsea Steel Toe Safety Boot…
R1,419 Discovery Miles 14 190
Baby Dove Rich Moisture Wipes (50Wipes)
R40 Discovery Miles 400
Red Elephant Horizon Backpack…
R527 Discovery Miles 5 270
3 Layer Fabric Face Mask (Blue)
R15 Discovery Miles 150
Sizzlers - The Hate Crime That Tore Sea…
Nicole Engelbrecht Paperback R320 R235 Discovery Miles 2 350
Large 1680D Boys & Girls Backpack…
R509 Discovery Miles 5 090
Tommy Hilfiger - Tommy Cologne Spray…
R1,218 R694 Discovery Miles 6 940
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Loot
Nadine Gordimer Paperback  (2)
R398 R330 Discovery Miles 3 300

 

Partners