Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
Everyone can learn science. How can science courses help learners refine their understanding of science topics by making science relevant to their lives? This book describes the knowledge integration approach to science teaching and learning and contrasts it with typical instruction that implements the absorption approach. Science Learning and Instruction: * Synthesizes a large body of literature on knowledge integration patterns * Illustrates the advantages of knowledge integration * Clarifies how teachers can guide students to become independent learners * Shows curriculum developers and designers how to take advantage of technology to promote inquiry and understanding of science By viewing the many intuitive ideas that students develop to explain the natural world as a starting point, this book illustrates how science activities can lead to coherent understanding. The book shows how conducting hands-on and virtual experiments, interrogating scientific simulations, and collaborating with peers can contribute to lifelong learning. Instruction aimed at knowledge integration can empower everyone to take advantage of their natural curiosity about the world and explore the wonder of science.
Everyone can learn science. How can science courses help learners refine their understanding of science topics by making science relevant to their lives? This book describes the knowledge integration approach to science teaching and learning and contrasts it with typical instruction that implements the absorption approach. Science Learning and Instruction: * Synthesizes a large body of literature on knowledge integration patterns * Illustrates the advantages of knowledge integration * Clarifies how teachers can guide students to become independent learners * Shows curriculum developers and designers how to take advantage of technology to promote inquiry and understanding of science By viewing the many intuitive ideas that students develop to explain the natural world as a starting point, this book illustrates how science activities can lead to coherent understanding. The book shows how conducting hands-on and virtual experiments, interrogating scientific simulations, and collaborating with peers can contribute to lifelong learning. Instruction aimed at knowledge integration can empower everyone to take advantage of their natural curiosity about the world and explore the wonder of science.
Most would agree that the acquisition of problem-solving ability is a primary goal of education. The emergence of the new information technologiesin the last ten years has raised high expectations with respect to the possibilities of the computer as an instructional tool for enhancing students' problem-solving skills. This volume is the first to assemble, review, and discuss the theoretical, methodological, and developmental knowledge relating to this topical issue in a multidisciplinary confrontation of highly recommended experts in cognitive science, computer science, educational technology, and instructional psychology. Contributors describe the most recent results and the most advanced methodological approaches relating to the application of the computer for encouraging knowledge construction, stimulating higher-order thinking and problem solving, and creating powerfullearning environments for pursuing those objectives. The computer applications relate to a variety of content domains and age levels.
Internet Environments for Science Education synthesizes 25 years of research to identify effective, technology-enhanced ways to convert students into lifelong science learners--one inquiry project at a time. It offers design principles for development of innovations; features tested, customizable inquiry projects that students, teachers, and professional developers can enact and refine; and introduces new methods and assessments to investigate the impact of technology on inquiry learning. The methodology--design-based research studies--enables investigators to capture the impact of innovations in the complex, inertia-laden educational enterprise and to use these findings to improve the innovation. The approach--technology-enhanced inquiry--takes advantage of global, networked information resources, sociocognitive research, and advances in technology combined in responsive learning environments. Internet Environments for Science Education advocates leveraging inquiry and technology to reform the full spectrum of science education activities--including instruction, curriculum, policy, professional development, and assessment. The book offers: *the knowledge integration perspective on learning, featuring the interpretive, cultural, and deliberate natures of the learner; *the scaffolded knowledge integration framework on instruction summarized in meta-principles and pragmatic principles for design of inquiry instruction; *a series of learning environments, including the Computer as Learning Partner (CLP), the Knowledge Integration Environment (KIE), and the Web-based Inquiry Science Environment (WISE) that designers can use to create new inquiry projects, customize existing projects, or inspire thinking about other learning environments; *curriculum design patterns for inquiry projects describing activity sequences to promote critique, debate, design, and investigation in science; *a partnership model establishing activity structures for teachers, pedagogical researchers, discipline experts, and technologists to jointly design and refine inquiry instruction; *a professional development model involving mentoring by an expert teacher; *projects about contemporary controversy enabling students to explore the nature of science; *a customization process guiding teachers to adapt inquiry projects to their own students, geographical characteristics, curriculum framework, and personal goals; and *a Web site providing additional links, resources, and community tools at www.InternetScienceEducation.org
Internet Environments for Science Education synthesizes 25 years of research to identify effective, technology-enhanced ways to convert students into lifelong science learners--one inquiry project at a time. It offers design principles for development of innovations; features tested, customizable inquiry projects that students, teachers, and professional developers can enact and refine; and introduces new methods and assessments to investigate the impact of technology on inquiry learning. The methodology--design-based research studies--enables investigators to capture the impact of innovations in the complex, inertia-laden educational enterprise and to use these findings to improve the innovation. The approach--technology-enhanced inquiry--takes advantage of global, networked information resources, sociocognitive research, and advances in technology combined in responsive learning environments. Internet Environments for Science Education advocates leveraging inquiry and technology to reform the full spectrum of science education activities--including instruction, curriculum, policy, professional development, and assessment. The book offers: *the knowledge integration perspective on learning, featuring the interpretive, cultural, and deliberate natures of the learner; *the scaffolded knowledge integration framework on instruction summarized in meta-principles and pragmatic principles for design of inquiry instruction; *a series of learning environments, including the Computer as Learning Partner (CLP), the Knowledge Integration Environment (KIE), and the Web-based Inquiry Science Environment (WISE) that designers can use to create new inquiry projects, customize existing projects, or inspire thinking about other learning environments; *curriculum design patterns for inquiry projects describing activity sequences to promote critique, debate, design, and investigation in science; *a partnership model establishing activity structures for teachers, pedagogical researchers, discipline experts, and technologists to jointly design and refine inquiry instruction; *a professional development model involving mentoring by an expert teacher; *projects about contemporary controversy enabling students to explore the nature of science; *a customization process guiding teachers to adapt inquiry projects to their own students, geographical characteristics, curriculum framework, and personal goals; and *a Web site providing additional links, resources, and community tools at www.InternetScienceEducation.org
|
You may like...
|