0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Multivariate Wavelet Frames (Hardcover, 1st ed. 2016): Maria Skopina, Aleksandr Krivoshein, Vladimir Protasov Multivariate Wavelet Frames (Hardcover, 1st ed. 2016)
Maria Skopina, Aleksandr Krivoshein, Vladimir Protasov
R3,363 Discovery Miles 33 630 Ships in 10 - 15 working days

This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in wavelet algorithms, which normally deliver better performance. The authors discuss how to provide H-symmetry, where H is an arbitrary symmetry group, for wavelet bases and frames. The book also studies so-called frame-like wavelet systems, which preserve many important properties of frames and can often be used in their place, as well as their approximation properties. The matrix method of computing the regularity of refinable function from the univariate case is extended to multivariate refinement equations with arbitrary dilation matrices. This makes it possible to find the exact values of the Hoelder exponent of refinable functions and to make a very refine analysis of their moduli of continuity.

Multivariate Wavelet Frames (Paperback, Softcover reprint of the original 1st ed. 2016): Maria Skopina, Aleksandr Krivoshein,... Multivariate Wavelet Frames (Paperback, Softcover reprint of the original 1st ed. 2016)
Maria Skopina, Aleksandr Krivoshein, Vladimir Protasov
R2,653 Discovery Miles 26 530 Ships in 18 - 22 working days

This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is symmetry. Different kinds of wavelet symmetry are required in various applications, since they preserve linear phase properties and also allow symmetric boundary conditions in wavelet algorithms, which normally deliver better performance. The authors discuss how to provide H-symmetry, where H is an arbitrary symmetry group, for wavelet bases and frames. The book also studies so-called frame-like wavelet systems, which preserve many important properties of frames and can often be used in their place, as well as their approximation properties. The matrix method of computing the regularity of refinable function from the univariate case is extended to multivariate refinement equations with arbitrary dilation matrices. This makes it possible to find the exact values of the Hoelder exponent of refinable functions and to make a very refine analysis of their moduli of continuity.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Anticolonialism in British Politics…
Stephen Howe Hardcover R4,571 Discovery Miles 45 710
Imaging in Oncology, An Issue of…
Vijay P. Khatri Hardcover R1,694 Discovery Miles 16 940
Gender and Colonialism - A Psychological…
Geraldine Moane Hardcover R2,654 Discovery Miles 26 540
Advanced Ceramics for Energy Storage…
Peng Cao, Zhigang Chen, … Paperback R5,172 Discovery Miles 51 720
Heinemann Physics for CSEC
Delia Samuel, Natasha Lewis, … Paperback R1,047 Discovery Miles 10 470
Characterization of Minerals, Metals…
John Carpenter, Chengguang Bai, … Hardcover R5,381 Discovery Miles 53 810
New Frontiers in Mammography
Sandra Lekin Hardcover R3,335 R3,015 Discovery Miles 30 150
Arduino for Musicians - A Complete Guide…
Brent Edstrom Hardcover R3,638 Discovery Miles 36 380
New Caribbean Junior Readers 4
Frances Mordecai, Gregory Gordon Paperback R547 Discovery Miles 5 470
Hepatobiliary Imaging, An Issue of…
Benjamin M. Yeh, Frank H. Miller Hardcover R2,609 Discovery Miles 26 090

 

Partners