Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
In recent years, a number of groundbreaking structural and mechanistic studies deepened our understanding of helicase mechanisms and established new approaches for their analyses. Many fundamental mechanistic questions ranging from the mechanism of force generation, mechanochemical coupling to distinct mechanisms by which the same enzyme translocates on DNA removing obstacles, unwinds DNA and/or remodels nucleoprotein complexes, however, remain to be answered. It is even less understood how the helicase motors are incorporated into a wide range of genome maintenance and repair machines. The field has reached a stage when the studies of molecular mechanisms and basic biology of helicases can and shall be integrated with the studies of development, cancer and longevity. The objective of this book is to provide the first systematic overview of structure, function and regulation of DNA helicases and related molecular motors. By integrating the knowledge obtained through the diverse technical approaches ranging from single-molecule biophysics to cellular and molecular biological studies the editors aim to provide a unified view on how helicases function in the cell, are regulated in response to different cellular stresses and are integrated into large macromolecular assemblies to form a complex and adaptive living system.
Mechanisms of DNA Recombination and Genome Rearrangements: Intersection between Homologous Recombination, DNA Replication and DNA Repair, Volume 601, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Homologous genetic recombination remains the most enigmatic process in DNA metabolism. The molecular machines of recombination preserve the integrity of the genetic material in all organisms and generate genetic diversity in evolution. The same molecular machines that support genetic integrity by orchestrating accurate repair of the most deleterious DNA lesions, however, also promote survival of cancerous cells and emergence of radiation and chemotherapy resistance. This two-volume set offers a comprehensive set of cutting edge methods to study various aspects of homologous recombination and cellular processes that utilize the enzymatic machinery of recombination. The chapters are written by the leading researches and cover a broad range of topics from the basic molecular mechanisms of recombinational proteins and enzymes to emerging cellular techniques and drug discovery efforts.
In recent years, a number of groundbreaking structural and mechanistic studies deepened our understanding of helicase mechanisms and established new approaches for their analyses. Many fundamental mechanistic questions ranging from the mechanism of force generation, mechanochemical coupling to distinct mechanisms by which the same enzyme translocates on DNA removing obstacles, unwinds DNA and/or remodels nucleoprotein complexes, however, remain to be answered. It is even less understood how the helicase motors are incorporated into a wide range of genome maintenance and repair machines. The field has reached a stage when the studies of molecular mechanisms and basic biology of helicases can and shall be integrated with the studies of development, cancer and longevity. The objective of this book is to provide the first systematic overview of structure, function and regulation of DNA helicases and related molecular motors. By integrating the knowledge obtained through the diverse technical approaches ranging from single-molecule biophysics to cellular and molecular biological studies the editors aim to provide a unified view on how helicases function in the cell, are regulated in response to different cellular stresses and are integrated into large macromolecular assemblies to form a complex and adaptive living system.
Mechanisms of DNA Recombination and Genome Rearrangements: Methods to Study Homologous Recombination, Volume 600, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Homologous genetic recombination remains the most enigmatic process in DNA metabolism. The molecular machines of recombination preserve the integrity of the genetic material in all organisms and generate genetic diversity in evolution. The same molecular machines that support genetic integrity by orchestrating accurate repair of the most deleterious DNA lesions, however, also promote survival of cancerous cells and emergence of radiation and chemotherapy resistance. This two-volume set offers a comprehensive set of cutting edge methods to study various aspects of homologous recombination and cellular processes that utilize the enzymatic machinery of recombination The chapters are written by the leading researches and cover a broad range of topics from the basic molecular mechanisms of recombinational proteins and enzymes to emerging cellular techniques and drug discovery efforts.
Single-Molecule Enzymology, Part B, the latest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in single-molecule enzymology, and includes sections on such topics as force-based and hybrid approaches, fluorescence, high-throughput sm enzymology, and nanopore and tethered particle motion.
Single-Molecule Enzymology, Part A, the latest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in single-molecule enzymology, and includes sections on such topics as force-based and hybrid approaches, fluorescence, high-throughput sm enzymology, nanopores, and tethered particle motion.
|
You may like...
|