Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 22 of 22 matches in All Departments
This monograph explores the early development of the calculus of variations in continental Europe during the Eighteenth Century by illustrating the mathematics of its founders. Closely following the original papers and correspondences of Euler, Lagrange, the Bernoullis, and others, the reader is immersed in the challenge of theory building. We see what the founders were doing, the difficulties they faced, the mistakes they made, and their triumphs. The authors guide the reader through these works with instructive commentaries and complements to the original proofs, as well as offering a modern perspective where useful. The authors begin in 1697 with Johann Bernoulli's work on the brachystochrone problem and the events leading up to it, marking the dawn of the calculus of variations. From there, they cover key advances in the theory up to the development of Lagrange's -calculus, including: * The isoperimetrical problems * Shortest lines and geodesics * Euler's Methodus Inveniendi and the two Additamenta Finally, the authors give the readers a sense of how vast the calculus of variations has become in centuries hence, providing some idea of what lies outside the scope of the book as well as the current state of affairs in the field. This book will be of interest to anyone studying the calculus of variations who wants a deeper intuition for the techniques and ideas that are used, as well as historians of science and mathematics interested in the development and evolution of modern calculus and analysis.
This self-contained work on linear and metric structures focuses on studying continuity and its applications to finite- and infinite-dimensional spaces. The book is divided into three parts. The first part introduces the basic ideas of linear and metric spaces, including the Jordan canonical form of matrices and the spectral theorem for self-adjoint and normal operators. The second part examines the role of general topology in the context of metric spaces and includes the notions of homotopy and degree. The third and final part is a discussion on Banach spaces of continuous functions, Hilbert spaces and the spectral theory of compact operators. Mathematical Analysis: Linear and Metric Structures and Continuity motivates the study of linear and metric structures with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering. Other books recently published by the authors include: Mathematical Analysis: Functions of One Variable, and Mathematical Analysis: Approximation and Discrete Processes. with a strong foundation in modern-day analysis.
This long-awaited book by two of the foremost researchers and writers in the field is the first part of a treatise that will cover the subject in breadth and depth, paying special attention to the historical origins, partly in applications, e.g. from geometrical optics, of parts of the theory. A variety of aids to the reader are provided: the detailed table of contents, an introduction to each chapter, section and subsection, an overview of the relevant liter- ature (in Vol. 2) plus the references in the Scholia to each chapter, in the (historical) footnotes, and in the biblio- graphy, and finally an index of the examples used throughout the book. Later volumes will deal with direct methods and regularity theory. Both individually and collectively these volumes will undoubtedly become standard references.
This long-awaited book by two of the foremost researchers and writers in the field is the first part of a treatise that will cover the subject in breadth and depth, paying special attention to the historical origins, partly in applications, e.g. from geometrical optics, of parts of the theory. A variety of aids to the reader are provided: the detailed table of contents, an introduction to each chapter, section and subsection, an overview of the relevant liter- ature (in Vol. 2) plus the references in the Scholia to each chapter, in the (historical) footnotes, and in the biblio- graphy, and finally an index of the examples used throughout the book. Later volumes will deal with direct methods and regularity theory. Both individually and collectively these volumes will undoubtedly become standard references.
"Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables" builds upon the basic ideas and techniques of differential and integral calculus for functions of several variables, as outlined in an earlier introductory volume. The presentation is largely focused on the foundations of measure and integration theory. The book begins with a discussion of the geometry of Hilbert spaces, convex functions and domains, and differential forms, particularly k-forms. The exposition continues with an introduction to the calculus of variations with applications to geometric optics and mechanics.The authorsconclude with the study of measure and integration theory - Borel, Radon, and Hausdorff measures and the derivation of measures. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This work may be used as a supplementary text in the classroom or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering. One of the key strengths of this presentation, along with the other four books on analysis published by the authors, is the motivation for understanding the subject through examples, observations, exercises, and illustrations."
This fairly self-contained work embraces a broad range of topics in analysis at the graduate level, requiring only a sound knowledge of calculus and the functions of one variable. A key feature of this lively yet rigorous and systematic exposition is the historical accounts of ideas and methods pertaining to the relevant topics. Most interesting and useful are the connections developed between analysis and other mathematical disciplines, in this case, numerical analysis and probability theory. The text is divided into two parts: The first examines the systems of real and complex numbers and deals with the notion of sequences in this context. After the presentation of natural numbers as a subset of the reals, elements of combinatorics and a discussion of the mathematical notion of the infinite are introduced. The second part is dedicated to discrete processes starting with a study of the processes of infinite summation both in the case of numerical series and of power series.
This superb and self-contained work is an introductory presentation of basic ideas, structures, and results of differential and integral calculus for functions of several variables. The wide range of topics covered include the differential calculus of several variables, including differential calculus of Banach spaces, the relevant results of Lebesgue integration theory, and systems and stability of ordinary differential equations. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This text motivates the study of the analysis of several variables with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering.
For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941."
Non-scalar variational problems appear in different fields. In geometry, for in stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for example in the classical theory of a-models. Non linear elasticity is another example in continuum mechanics, while Oseen-Frank theory of liquid crystals and Ginzburg-Landau theory of superconductivity require to treat variational problems in order to model quite complicated phenomena. Typically one is interested in finding energy minimizing representatives in homology or homotopy classes of maps, minimizers with prescribed topological singularities, topological charges, stable deformations i. e. minimizers in classes of diffeomorphisms or extremal fields. In the last two or three decades there has been growing interest, knowledge, and understanding of the general theory for this kind of problems, often referred to as geometric variational problems. Due to the lack of a regularity theory in the non scalar case, in contrast to the scalar one - or in other words to the occurrence of singularities in vector valued minimizers, often related with concentration phenomena for the energy density - and because of the particular relevance of those singularities for the problem being considered the question of singling out a weak formulation, or completely understanding the significance of various weak formulations becames non trivial."
This monograph (in two volumes) deals with non scalar variational problems arising in geometry, as harmonic mappings between Riemannian manifolds and minimal graphs, and in physics, as stable equilibrium configuations in nonlinear elasticity or for liquid crystals. The presentation is selfcontained and accessible to non specialists. Topics are treated as far as possible in an elementary way, illustrating results with simple examples; in principle, chapters and even sections are readable independently of the general context, so that parts can be easily used for graduate courses. Open questions are often mentioned and the final section of each chapter discusses references to the literature and sometimes supplementary results. Finally, a detailed Table of Contents and an extensive Index are of help to consult this monograph
This monograph explores the early development of the calculus of variations in continental Europe during the Eighteenth Century by illustrating the mathematics of its founders. Closely following the original papers and correspondences of Euler, Lagrange, the Bernoullis, and others, the reader is immersed in the challenge of theory building. We see what the founders were doing, the difficulties they faced, the mistakes they made, and their triumphs. The authors guide the reader through these works with instructive commentaries and complements to the original proofs, as well as offering a modern perspective where useful. The authors begin in 1697 with Johann Bernoulli's work on the brachystochrone problem and the events leading up to it, marking the dawn of the calculus of variations. From there, they cover key advances in the theory up to the development of Lagrange's -calculus, including: * The isoperimetrical problems * Shortest lines and geodesics * Euler's Methodus Inveniendi and the two Additamenta Finally, the authors give the readers a sense of how vast the calculus of variations has become in centuries hence, providing some idea of what lies outside the scope of the book as well as the current state of affairs in the field. This book will be of interest to anyone studying the calculus of variations who wants a deeper intuition for the techniques and ideas that are used, as well as historians of science and mathematics interested in the development and evolution of modern calculus and analysis.
For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941."
This book combines the efforts of a distinguished team of authors, who are all renowned mathematicians and expositors, and provides a modern introduction to the calculus of variations. By focusing on the one-dimensional case it remains relatively free of technicalities, and therefore provides a useful overview of the theory at a level suitable for graduate students.
This two-volume treatise is a standard reference in the field. It pays special attention to the historical aspects and the origins partly in applied problems such as those of geometric optics of parts of the theory. It contains an introduction to each chapter, section, and subsection and an overview of the relevant literature in the footnotes and bibliography. It also includes an index of the examples used throughout the book.
Non-scalar variational problems appear in different fields. In geometry, for in stance, we encounter the basic problems of harmonic maps between Riemannian manifolds and of minimal immersions; related questions appear in physics, for example in the classical theory of a-models. Non linear elasticity is another example in continuum mechanics, while Oseen-Frank theory of liquid crystals and Ginzburg-Landau theory of superconductivity require to treat variational problems in order to model quite complicated phenomena. Typically one is interested in finding energy minimizing representatives in homology or homotopy classes of maps, minimizers with prescribed topological singularities, topological charges, stable deformations i. e. minimizers in classes of diffeomorphisms or extremal fields. In the last two or three decades there has been growing interest, knowledge, and understanding of the general theory for this kind of problems, often referred to as geometric variational problems. Due to the lack of a regularity theory in the non scalar case, in contrast to the scalar one - or in other words to the occurrence of singularities in vector valued minimizers, often related with concentration phenomena for the energy density - and because of the particular relevance of those singularities for the problem being considered the question of singling out a weak formulation, or completely understanding the significance of various weak formulations becames non trivial."
This book by two of the foremost researchers and writers in the field is the first part of a treatise that covers the subject in breadth and depth, paying special attention to the historical origins of the theory. Both individually and collectively these volumes have already become standard references.
This monograph (in two volumes) deals with non scalar variational problems arising in geometry, as harmonic mappings between Riemannian manifolds and minimal graphs, and in physics, as stable equilibrium configuations in nonlinear elasticity or for liquid crystals. The presentation is selfcontained and accessible to non specialists. Topics are treated as far as possible in an elementary way, illustrating results with simple examples; in principle, chapters and even sections are readable independently of the general context, so that parts can be easily used for graduate courses. Open questions are often mentioned and the final section of each chapter discusses references to the literature and sometimes supplementary results. Finally, a detailed Table of Contents and an extensive Index are of help to consult this monograph
This superb and self-contained work is an introductory presentation of basic ideas, structures, and results of differential and integral calculus for functions of several variables. The wide range of topics covered include the differential calculus of several variables, including differential calculus of Banach spaces, the relevant results of Lebesgue integration theory, and systems and stability of ordinary differential equations. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This text motivates the study of the analysis of several variables with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering.
This self-contained work on linear and metric structures focuses on studying continuity and its applications to finite- and infinite-dimensional spaces. The book is divided into three parts. The first part introduces the basic ideas of linear and metric spaces, including the Jordan canonical form of matrices and the spectral theorem for self-adjoint and normal operators. The second part examines the role of general topology in the context of metric spaces and includes the notions of homotopy and degree. The third and final part is a discussion on Banach spaces of continuous functions, Hilbert spaces and the spectral theory of compact operators. Mathematical Analysis: Linear and Metric Structures and Continuity motivates the study of linear and metric structures with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering. Other books recently published by the authors include: Mathematical Analysis: Functions of One Variable, and Mathematical Analysis: Approximation and Discrete Processes. with a strong foundation in modern-day analysis.
* Embraces a broad range of topics in analysis requiring only a sound knowledge of calculus and the functions of one variable. * Filled with beautiful illustrations, examples, exercises at the end of each chapter, and a comprehensive index.
The description for this book, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), will be forthcoming.
|
You may like...
|