Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
Fourteen years after the first proposal of a fractal theoretical model to understand the dynamics of laser produced plasma, a complete image of the model is projected on a wide range of empirical data related to laser produced plasmas.The book tackles the two sides of laser produced plasmas with experimental data on a wide range of materials, from metallic alloys to geological samples and the associated mathematical model is developed in the multifractal theory of motion. A new perspective is explored in analyzing and interpreting the data collected by electrical or optical methods, focusing especially on the charged particles dynamics and the nature of fractal fluctuations and their influence during measurements as well as to the scattering process and plasma splitting phenomena, all seen through the lens of multifractal physics.The book offers the best presentation of the multifractal theoretical model for the study of transient phenomena in laser produced plasmas, which focus leads to a balanced development of the model showcasing both the flexibility and the unique vision of a multifractal mathematical apparatus.
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
This book presents an exhaustive study of atomicity from a mathematics perspective in the framework of multi-valued non-additive measure theory. Applications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, applications of these concepts are brought to light in the study of the dynamics of complex systems. The first chapter prepares the basics for the next chapters. In the last chapter, applications of atomicity in quantum physics are developed and new concepts, such as the fractal atom are introduced. The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potential applications in life sciences, are opened.
The Mathematical Principles of Scale Relativity Physics: The Concept of Interpretation explores and builds upon the principles of Laurent Nottale's scale relativity. The authors address a variety of problems encountered by researchers studying the dynamics of physical systems. It explores Madelung fluid from a wave mechanics point of view, showing that confinement and asymptotic freedom are the fundamental laws of modern natural philosophy. It then probes Nottale's scale transition description, offering a sound mathematical principle based on continuous group theory. The book provides a comprehensive overview of the matter to the reader via a generalization of relativity, a theory of colors, and classical electrodynamics. Key Features: Develops the concept of scale relativity interpreted according to its initial definition enticed by the birth of wave and quantum mechanics Provides the fundamental equations necessary for interpretation of matter, describing the ensembles of free particles according to the concepts of confinement and asymptotic freedom Establishes a natural connection between the Newtonian forces and the Planck's law from the point of view of space and time scale transition: both are expressions of invariance to scale transition The work will be of great interest to graduate students, doctoral candidates, and academic researchers working in mathematics and physics.
The Mathematical Principles of Scale Relativity Physics: The Concept of Interpretation explores and builds upon the principles of Laurent Nottale's scale relativity. The authors address a variety of problems encountered by researchers studying the dynamics of physical systems. It explores Madelung fluid from a wave mechanics point of view, showing that confinement and asymptotic freedom are the fundamental laws of modern natural philosophy. It then probes Nottale's scale transition description, offering a sound mathematical principle based on continuous group theory. The book provides a comprehensive overview of the matter to the reader via a generalization of relativity, a theory of colors, and classical electrodynamics. Key Features: Develops the concept of scale relativity interpreted according to its initial definition enticed by the birth of wave and quantum mechanics Provides the fundamental equations necessary for interpretation of matter, describing the ensembles of free particles according to the concepts of confinement and asymptotic freedom Establishes a natural connection between the Newtonian forces and the Planck's law from the point of view of space and time scale transition: both are expressions of invariance to scale transition The work will be of great interest to graduate students, doctoral candidates, and academic researchers working in mathematics and physics.
Using Cartan's differential 1-forms theory, and assuming that the motion variables depend on Euclidean invariants, certain dynamics of the material point and systems of material points are developed. Within such a frame, the Newtonian force as mass inertial interaction at the intragalactic scale, and the Hubble-type repulsive interaction at intergalactic distances, are developed.The wave-corpuscle duality implies movements on curves of constant informational energy, which implies both quantizations and dynamics of velocity limits.Analysis of motion of a charged particle in a combined field which is electromagnetic and with constant magnetism implies fractal trajectories. Mechanics of material points in a fractalic space is constructed, and various applications - fractal atom, potential well, free particle, etc. - are discussed.
This book presents an exhaustive study of atomicity from a mathematics perspective in the framework of multi-valued non-additive measure theory. Applications to quantum physics and, more generally, to the fractal theory of the motion, are highlighted. The study details the atomicity problem through key concepts, such as the atom/pseudoatom, atomic/nonatomic measures, and different types of non-additive set-valued multifunctions. Additionally, applications of these concepts are brought to light in the study of the dynamics of complex systems. The first chapter prepares the basics for the next chapters. In the last chapter, applications of atomicity in quantum physics are developed and new concepts, such as the fractal atom are introduced. The mathematical perspective is presented first and the discussion moves on to connect measure theory and quantum physics through quantum measure theory. New avenues of research, such as fractal/multifractal measure theory with potential applications in life sciences, are opened.
This book continues the classical Newtonian theory in both its initial spirit and the spirit of general relativity. It throws a bridge between classical Newtonian theory of forces and some contemporary concepts of the atomic, nuclear and particle theories. This book takes the Skyrme theory of nuclear matter mainly from the point of view that it allows the initial analogy between the atomic edifice and the solar system in all details. Especially important is the detail that the atomic nucleus works exactly like the Sun, and they can be described in the same way. Based on this unitary description, the authors go further on, in showing that the Skyrme theory is the only theory naturally suited for the explanation of structure of nuclear matter. Thus it should be actually a classical theory, inasmuch as it simply carries over into microcosmos the very Newtonian theory of forces extracted from the planetary Keplerian synthesis of celestial motions. By this the problem of structure of the nucleus becomes actually a problem of classical physics.
|
You may like...
Safety Management In The Workplace
Francois van Loggerenberg
Paperback
(1)
Ethics in Counseling & Psychotherapy
Elizabeth Welfel
Paperback
1 Recce: Volume 3 - Through Stealth Our…
Alexander Strachan
Paperback
|