![]() |
![]() |
Your cart is empty |
||
Showing 1 - 21 of 21 matches in All Departments
An "intriguing and accessible" (Publishers Weekly) interpretation of the life of Galileo Galilei, one of history's greatest and most fascinating scientists, that sheds new light on his discoveries and how he was challenged by science deniers. "We really need this story now, because we're living through the next chapter of science denial" (Bill McKibben). Galileo's story may be more relevant today than ever before. At present, we face enormous crises-such as minimizing the dangers of climate change-because the science behind these threats is erroneously questioned or ignored. Galileo encountered this problem 400 years ago. His discoveries, based on careful observations and ingenious experiments, contradicted conventional wisdom and the teachings of the church at the time. Consequently, in a blatant assault on freedom of thought, his books were forbidden by church authorities. Astrophysicist and bestselling author Mario Livio draws on his own scientific expertise and uses his "gifts as a great storyteller" (The Washington Post) to provide a "refreshing perspective" (Booklist) into how Galileo reached his bold new conclusions about the cosmos and the laws of nature. A freethinker who followed the evidence wherever it led him, Galileo was one of the most significant figures behind the scientific revolution. He believed that every educated person should know science as well as literature, and insisted on reaching the widest audience possible, publishing his books in Italian rather than Latin. Galileo was put on trial with his life in the balance for refusing to renounce his scientific convictions. He remains a hero and inspiration to scientists and all of those who respect science-which, as Livio reminds us in this "admirably clear and concise" (The Times, London) book, remains threatened everyday.
Humans have long thought that planetary systems similar to our own should exist around stars other than the Sun, yet the search for planets outside our Solar System has had a dismal history of discoveries that could not be confirmed. However, this all changed in 1995, with the past decade witnessing astonishing progress in this field; we now know of more than 200 extrasolar planets. These findings mark crucial milestones in the search for extraterrestrial life - arguably one of the most intriguing endeavors of modern science. These proceedings from the Space Telescope Science Institute Symposium on Extrasolar Planets explore one of the hottest topics in astronomy today. Discussions include the Kepler mission, observational constraints on dust disk lifetimes and the implications for planet formation, and gravitational instabilities in protoplanetary disks. With review papers written by world experts in their fields, this is an important resource on extrasolar planets.
What can emission lines tell us about an astrophysical object? A workshop at the Space Telescope Science Institute was dedicated to address just this question - for a host of objects (including planetary nebulae and active galactic nuclei) across a broad range of wavelengths (from the infrared through to gamma-rays). Thirteen review articles from internationally renowned experts are presented in this volume. They provide an edited and coherent overview of the latest technical data, techniques in and applications of the study of emission lines from a variety of objects. Chapters include the theory of radiative transfer, photoionising shocks, and emission lines from stellar winds, as well as useful summaries of abundance determinations, atomic data, and diagnostics for IR, UV, gamma-ray and molecular lines. Together these review articles provide an overview of the analysis of emission lines. They summarise current knowledge, highlight outstanding problems and provide focus for fruitful future research. In this way they provide an excellent introduction for graduate students and reference for professionals.
Drawing on the lives of five great scientists, this "scholarly,
insightful, and beautifully written book" (Martin Rees, author of
"From Here to Infinity") illuminates the path to scientific
discovery.
Bestselling author and astrophysicist Mario Livio examines the
lives and theories of history's greatest mathematicians to ask
how--if mathematics is an abstract construction of the human
mind--it can so perfectly explain the physical world.
Astrophysicist and author Mario Livio investigates perhaps the most human of all our characteristics--curiosity--in this "lively, expert, and definitely not dumbed-down account" (Kirkus Reviews) as he explores our innate desire to know why.Experiments demonstrate that people are more distracted when they overhear a phone conversation--where they can know only one side of the dialogue--than when they overhear two people talking and know both sides. Why does half a conversation make us more curious than a whole conversation? "Have you ever wondered why we wonder why? Mario Livio has, and he takes you on a fascinating quest to understand the origin and mechanisms of our curiosity. I thoroughly recommend it." (Adam Riess, Nobel Prize Winner in Physics, 2011). Curiosity is not only at the heart of mystery and suspense novels, it is also essential to other creative endeavors, from painting to sculpture to music. It is the principal driver of basic scientific research. Even so, there is still no definitive scientific consensus about why we humans are so curious, or about the mechanisms in our brain that are responsible for curiosity. In the ever-fascinating Why? Livio interviewed scientists in several fields to explore the nature of curiosity. He examined the lives of two of history's most curious geniuses, Leonardo da Vinci and Richard Feynman. He also talked to people with boundless curiosity: a superstar rock guitarist who is also an astrophysicist; an astronaut with degrees in computer science, biology, literature, and medicine. What drives these people to be curious about so many subjects? An astrophysicist who has written about mathematics, biology, and now psychology and neuroscience, Livio has firsthand knowledge of his subject which he explores in a lucid, entertaining way that will captivate anyone who is curious about curiosity.
Advance Praise for The Accelerating Universe """"The Accelerating Universe"" is not only an informative book
about modern cosmology. It is rich storytelling and, above all, a
celebration of the human mind in its quest for beauty in all
things."" ""This is a wonderfully lucid account of the extraordinary
discoveries that have made the last years a golden period for
observational cosmology. But Mario Livio has not only given the
reader one clear explanation after another of what astronomers are
up to, he has used them to construct a provocative argument for the
importance of aesthetics in the development of science and for the
inseparability of science, art, and culture."" ""What a pleasure to read An exciting, simple account of the
universe revealed by modern astronomy. Beautifully written, clearly
presented, informed by scientific and philosophical
insights."" ""A book with charm, beauty, elegance, and importance. As
authoritative a journey as can be taken through modern
cosmology.""
Throughout history, thinkers from mathematicians to theologians have pondered the mysterious relationship between numbers and the nature of reality. In this fascinating book, Mario Livio tells the tale of a number at the heart of that mystery: phi, or 1.6180339887...This curious mathematical relationship, widely known as "The Golden Ratio," was discovered by Euclid more than two thousand years ago because of its crucial role in the construction of the pentagram, to which magical properties had been attributed. Since then it has shown a propensity to appear in the most astonishing variety of places, from mollusk shells, sunflower florets, and rose petals to the shape of the galaxy. Psychological studies have investigated whether the Golden Ratio is the most aesthetically pleasing proportion extant, and it has been asserted that the creators of the Pyramids and the Parthenon employed it. It is believed to feature in works of art from Leonardo da Vinci's Mona Lisa to Salvador Dali's The Sacrament of the Last Supper, and poets and composers have used it in their works. It has even been found to be connected to the behavior of the stock market!
This 2006 book acknowledges the importance of identifying the most crucial science to be performed by the superb Hubble Telescope. With this goal in mind, the book presents a review of some of the most important open questions in astronomy. World experts examine topics ranging from extrasolar planets and star formation to supermassive black holes and the reionization of the universe. Special emphasis is placed on what astronomical observations should be carried out during the next few years to enable breakthroughs in our understanding of a complex and dynamic universe. In particular, the reviewers attempt to identify those topics to which the Hubble Space Telescope can uniquely contribute. The special emphasis on future research makes this book an essential resource for both professional researchers and graduate students in astronomy and astrophysics.
The Local Group of galaxies consists of the Milky Way and all of its neighbours. The proximity of these galaxies allows for detailed studies of the processes that have led to their formation, structures, and evolution. In particular, studies of the Local Group can test predictions of structure formation that are based on dark energy and cold dark matter. This book presents a collection of review papers, written by world experts, on some of the most important aspects of Local Group Astrophysics. It is an invaluable resource for both professional researchers and graduate students in this fascinating area of research.
Humans have long thought that planetary systems similar to our own should exist around stars other than the Sun, yet the search for planets outside our Solar System has had a dismal history of discoveries that could not be confirmed. However, this all changed in 1995, after which astonishing progress can be seen in this field; we now know of more than 200 extrasolar planets. These findings mark crucial milestones in the search for extraterrestrial life - arguably one of the most intriguing endeavors of modern science. These proceedings from the 2005 Space Telescope Science Institute Symposium on Extrasolar Planets explore one of the hottest topics in astronomy. Discussions include the Kepler mission, observational constraints on dust disk lifetimes and the implications for planet formation, and gravitational instabilities in protoplanetary disks. With review papers written by world experts in their fields, this is an important resource on extrasolar planets.
Astrobiology is one of the hottest areas of current research, reflecting not only impressive advances in the understanding of the origin of life but also the discovery of over 100 extrasolar planets in recent years. This volume is based on a meeting held in 2002 at the Space Telescope Science Institute, which aimed to lay the astrophysical groundwork for locating habitable places in the Universe. Written by leading scientists in the field, it covers a range of topics relevant to the search for life in the Universe, including: cosmology and its implications for the emergence of life, the habitable zone in the Milky Way Galaxy, the formation of stars and planets, the study of interstellar and interplanetary matter, searches for extrasolar planets, the synthesis of organic material in space, and spectroscopic signatures that could be used to detect life. This is an invaluable resource for both professional researchers and graduate students.
This book reviews the findings on the composition of the universe, its dynamics, and the implications of both for the evolution of large-scale structure and for fundamental theories of the universe. With each chapter written by a leading expert in the field, topics include massive compact halo objects, the oldest white dwarfs, hot gas in clusters of galaxies, primordial nucleosynthesis, modified Newtonian dynamics, the cosmic mass density, the growth of large-scale structure, and a discussion of dark energy. This book is an invaluable resource for both professional astronomers and graduate students.
The Local Group of galaxies consists of the Milky Way and all of its neighbors. The proximity of these galaxies allows for detailed studies of the processes that have led to their formation, structures, and evolution. In particular, studies of the Local Group can test predictions of structure formation that are based on dark energy and cold dark matter. This book presents a collection of review papers, written by world experts, on some of the most important aspects of Local Group Astrophysics. It is an invaluable resource for both professional researchers and graduate students in this cutting-edge area of research.
What can emission lines tell us about an astrophysical object? A workshop at the Space Telescope Science Institute was dedicated to address just this question - for a host of objects (including planetary nebulae and active galactic nuclei) across a broad range of wavelengths (from the infrared through to gamma-rays). Thirteen review articles from internationally renowned experts are presented in this volume. They provide an edited and coherent overview of the latest technical data, techniques in and applications of the study of emission lines from a variety of objects. Chapters include the theory of radiative transfer, photoionising shocks, and emission lines from stellar winds, as well as useful summaries of abundance determinations, atomic data, and diagnostics for IR, UV, gamma-ray and molecular lines. Together these review articles provide an overview of the analysis of emission lines. They summarise current knowledge, highlight outstanding problems and provide focus for fruitful future research. In this way they provide an excellent introduction for graduate students and reference for professionals.
A Brilliant Journey into the World of Beauty and Modern Cosmology "Thought-provoking . . . engaging."–New Scientist "The Accelerating Universe is not only an informative book about cosmology. It is rich storytelling and, above all, a celebration of the human mind on its quest for beauty in all things."–Alan Lightman, bestselling author of Einstein’s Dreams "Stimulating."–Nature "The reader will enter a ‘garden of delights.’"–Physics World "Far more than a puzzle for specialists, the struggle to reinterpret the cosmos raises fundamental questions about the human craving for order: Does this craving reflect deep cosmic harmonies that helped create our species? Or does it simply defy an irreducible chaos that we would rather not confront? Livio probes these questions with a daring sufficient to satisfy the hungriest curiosity."–Booklist In this entertaining and lively exploration of the universe, Hubble Space Telescope scientist Mario Livio introduces us to the "old cosmology," which culminated in the view of a perfectly balanced universe, and then presents all of the fascinating ideas being explored by cosmologists in the "new cosmology," which has been inspired by the discovery of acceleration. Providing extraordinarily clear explanations of all the key concepts and theoretical ideas, Livio is a marvelous guide through this most exciting frontier in science today.
This collection of papers from the Space Telescope Science Institute Symposium on massive stars addresses the many aspects of astrophysics in which these stars play an important role. Review papers are presented from both observational and theoretical work by world experts in the study of these rare stars. Topics discussed include star formation in the local and distant universe, the feedback effects of the massive stars, mass loss from massive stars, and explosions of massive stars. The combination of papers produces a comprehensive overview of up-to-date research in the field, making this book an invaluable resource for professional researchers and for students of astrophysics.
With the Hubble Space Telepscope's next servicing mission still uncertain, identifying the most crucial science to be performed by this superb telescope has become of paramount importance. With this goal in mind, this book presents a review of some of the most important open questions in astronomy today. World experts examine topics ranging from extrasolar planets and star formation to supermassive black holes and the reionization of the universe. Special emphasis is placed on what astronomical observations should be carried out during the next few years to enable breakthroughs in our understanding of a complex and dynamic universe. In particular, the reviewers attempt to identify those topics to which the Hubble Space Telescope can uniquely contribute. The special emphasis on future research makes this book an essential resource for both professional researchers and graduate students in astronomy and astrophysics.
This timely volume presents specially written articles by world experts at an international conference at the Space Telescope Science Institute. The goal of the meeting was to assemble physicists and astronomers working on all aspects of dark matter and theories of gravity. Topics covered include Nucleosynthesis, Hot Gas in Clusters, MACHOs, WIMPs, Rotation Curves, Gravitational Lensing Neutrinos, Large Scale Flows, Dwarf Spheroidals, Cosmological Parameters from Supernovae, the Cosmic Microwave Background, the Cosmological Constant, and Theories of Gravity.
Black holes, once considered to be of purely theoretical interest, play an important role in observational astronomy and a range of astrophysical phenomena. This volume is based on a meeting held at the Space Telescope Science Institute, which explored the many aspects of black hole astrophysics. Written by world experts in areas of stellar-mass, intermediate-mass and supermassive black holes, these review papers provide an up-to-date overview of developments in this field. Topics discussed range from black hole entropy and the fate of information to supermassive black holes at the centers of galaxies, and from the possibility of producing black holes in collider experiments to the measurements of black hole spins. This is an invaluable resource for researchers currently working in the field, and for graduate students interested in this active and growing area of research.
What do Bach's compositions, Rubik's Cube, the way we choose our
mates, and the physics of subatomic particles have in common? All
are governed by the laws of symmetry, which elegantly unify
scientific and artistic principles. Yet the mathematical language
of symmetry-known as group theory-did not emerge from the study of
symmetry at all, but from an equation that couldn't be solved.
|
![]() ![]() You may like...
|