Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
In this monograph, the authors present some powerful methods for dealing with singularities in elliptic and parabolic partial differential inequalities. Here, the authors take the unique approach of investigating differential inequalities rather than equations, the reason being that the simplest way to study an equation is often to study a corresponding inequality; for example, using sub and superharmonic functions to study harmonic functions. Another unusual feature of the present book is that it is based on integral representation formulae and nonlinear potentials, which have not been widely investigated so far. This approach can also be used to tackle higher order differential equations. The book will appeal to graduate students interested in analysis, researchers in pure and applied mathematics, and engineers who work with partial differential equations. Readers will require only a basic knowledge of functional analysis, measure theory and Sobolev spaces.
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.
This brief research monograph uses modern mathematical methods to investigate partial differential equations with nonlinear convolution terms, enabling readers to understand the concept of a solution and its asymptotic behavior. In their full generality, these inequalities display a non-local structure. Classical methods, such as maximum principle or sub- and super-solution methods, do not apply to this context. This work discusses partial differential inequalities (instead of differential equations) for which there is no variational setting. This current work brings forward other methods that prove to be useful in understanding the concept of a solution and its asymptotic behavior related to partial differential inequalities with nonlinear convolution terms. It promotes and illustrates the use of a priori estimates, Harnack inequalities, and integral representation of solutions. One of the first monographs on this rapidly expanding field, the present work appeals to graduate and postgraduate students as well as to researchers in the field of partial differential equations and nonlinear analysis.
This book provides a comprehensive introduction to the mathematical
theory of nonlinear problems described by singular elliptic
equations. There are carefully analyzed logistic type equations
with boundary blow-up solutions and generalized Lane-Emden-Fowler
equations or Gierer-Meinhardt systems with singular nonlinearity in
anisotropic media. These nonlinear problems appear as mathematical
models in various branches of Physics, Mechanics, Genetics,
Economics, Engineering, and they are also relevant in Quantum
Physics and Differential Geometry.
Das Umweltstrafrecht ist ein Teilgebiet des Wirtschaftsstrafrechts und dient dem Schutz der naturlichen Lebensgrundlagen. Dabei ist der Schutz einzelner Umweltmedien wie Boden, Luft und Wasser zunehmend Gegenstand strafrechtlicher Verfolgung. Das Lehrbuch bietet eine Einfuhrung in die Grundlagen des Umweltstrafrechts. Die Autoren liefern einen Uberblick uber die aktuelle Rechtsprechung und illustrieren das Umweltstrafrecht anhand zahlreicher Beispielfalle.
|
You may like...
|