![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
This book provides a concrete introduction to a number of topics in harmonic analysis, accessible at the early graduate level or, in some cases, at an upper undergraduate level. Necessary prerequisites to using the text are rudiments of the Lebesgue measure and integration on the real line. It begins with a thorough treatment of Fourier series on the circle and their applications to approximation theory, probability, and plane geometry (the isoperimetric theorem). Frequently, more than one proof is offered for a given theorem to illustrate the multiplicity of approaches. The second chapter treats the Fourier transform on Euclidean spaces, especially the author's results in the three-dimensional piecewise smooth case, which is distinct from the classical Gibbs - Wilbraham phenomenon of one-dimensional Fourier analysis. The Poisson summation formula treated in Chapter 3 provides an elegant connection between Fourier series on the circle and Fourier transforms on the real line, culminating in Landau's asymptotic formulas for lattice points on a large sphere. Much of modern harmonic analysis is concerned with the behavior of various linear operators on the Lebesgue spaces Lp (Rn). Chapter 4 gives a gentle introduction to these results, using the Riesz - Thorin theorem and the Marcinkiewicz interpolation formula. One of the long-time users of Fourier analysis is probability theory. In Chapter 5 the central limit theorem, iterated log theorem, and Berry - Esseen theorems are developed using the suitable Fourier-analytic tools. The final chapter furnishes a gentle introduction to wavelet theory, depending only on the L2 theory of the Fourier transform (the Plancherel theorem). The basic notions of scale and location parameters demonstrate the flexibility of the wavelet approach to harmonic analysis. The text contains numerous examples and more than 200 exercises, each located in close proximity to the related theoretical material.
This volume attempts to exhibit current research in stochastic integration, stochastic differential equations, stochastic optimization and stochastic problems in physics and biology. It includes information on the theory of Dirichlet forms, Feynman integration and the Schrodinger's equation.
This volume attempts to exhibit current research in stochastic integration, stochastic differential equations, stochastic optimization and stochastic problems in physics and biology. It includes information on the theory of Dirichlet forms, Feynman integration and the Schrodinger's equation.
These materials - developed and thoroughly class tested over many years by the authors -are for use in courses at the sophomore/junior level. A prerequisite is the calculus of one variable, although calculus of several variables, and linear algebra are recommended. The text covers the standard topics in first and second order equations, power series solutions, first order systems, Laplace transforms, numerical methods and stability of non-linear systems. Liberal use is made of programs in Mathematica, both for symbolic computations and graphical displays. The programs are described in separate sections, as well as in the accompanying Mathematica notebooks. However, the book has been designed so that it can be read with or without Mathematica and no previous knowledge of Mathematica is required. The CD-ROM contains the Mathematica solution of worked examples, a selection of various Mathematica notebooks, Mathematica movies and sample labs for students. Mathematica programs and additional problem/example files will be available online through the TELOS Web site and the authors dedicated web site.
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
|
![]() ![]() You may like...
Herontdek Jou Selfvertroue - Sewe Stappe…
Rolene Strauss
Paperback
![]()
|