Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
This volume highlights the mathematical research presented at the 2019 Association for Women in Mathematics (AWM) Research Symposium held at Rice University, April 6-7, 2019. The symposium showcased research from women across the mathematical sciences working in academia, government, and industry, as well as featured women across the career spectrum: undergraduates, graduate students, postdocs, and professionals. The book is divided into eight parts, opening with a plenary talk and followed by a combination of research paper contributions and survey papers in the different areas of mathematics represented at the symposium: algebraic combinatorics and graph theory algebraic biology commutative algebra analysis, probability, and PDEs topology applied mathematics mathematics education
This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.
This monograph considers the analytical and geometrical questions emerging from the study of thin elastic films that exhibit residual stress at free equilibria. It provides the comprehensive account, the details and background on the most recent results in the combined research perspective on the classical themes: in Differential Geometry – that of isometrically embedding a shape with a given metric in an ambient space of possibly different dimension, and in Calculus of Variations – that of minimizing non-convex energy functionals parametrized by a quantity in whose limit the functionals become degenerate. Prestressed thin films are present in many contexts and applications, such as: growing tissues, plastically strained sheets, engineered swelling or shrinking gels, petals and leaves of flowers, or atomically thin graphene layers. While the related questions about the physical basis for shape formation lie at the intersection of biology, chemistry and physics, fundamentally they are of the analytical and geometrical character, and can be tackled using the techniques of the dimension reduction, laid out in this book. The text will appeal to mathematicians and graduate students working in the fields of Analysis, Calculus of Variations, Partial Differential Equations, and Applied Math. It will also be of interest to researchers and graduate students in Engineering (especially fields related to Solid Mechanics and Materials Science), who would like to gain the modern mathematical insight and learn the necessary tools.
This volume highlights contributions of women mathematicians in the study of complex materials and includes both original research papers and reviews. The featured topics and methods draw on the fields of Calculus of Variations, Partial Differential Equations, Functional Analysis, Differential Geometry and Topology, as well as Numerical Analysis and Mathematical Modelling. Areas of applications include foams, fluid-solid interactions, liquid crystals, shape-memory alloys, magnetic suspensions, failure in solids, plasticity, viscoelasticity, homogenization, crystallization, grain growth, and phase-field models.
This volume contains the proceedings of the Summer Program on Nonlinear Conservation Laws and Applications held at the IMA on July 13--31, 2009. Hyperbolic conservation laws is a classical subject, which has experienced vigorous growth in recent years. The present collection provides a timely survey of the state of the art in this exciting field, and a comprehensive outlook on open problems. Contributions of more theoretical nature cover the following topics: global existence and uniqueness theory of one-dimensional systems, multidimensional conservation laws in several space variables and approximations of their solutions, mathematical analysis of fluid motion, stability and dynamics of viscous shock waves, singular limits for viscous systems, basic principles in the modeling of turbulent mixing, transonic flows past an obstacle and a fluid dynamic approach for isometric embedding in geometry, models of nonlinear elasticity, the Monge problem, and transport equations with rough coefficients. In addition, there are a number of papers devoted to applications. These include: models of blood flow, self-gravitating compressible fluids, granular flow, charge transport in fluids, and the modeling and control of traffic flow on networks.
This volume highlights the mathematical research presented at the 2019 Association for Women in Mathematics (AWM) Research Symposium held at Rice University, April 6-7, 2019. The symposium showcased research from women across the mathematical sciences working in academia, government, and industry, as well as featured women across the career spectrum: undergraduates, graduate students, postdocs, and professionals. The book is divided into eight parts, opening with a plenary talk and followed by a combination of research paper contributions and survey papers in the different areas of mathematics represented at the symposium: algebraic combinatorics and graph theory algebraic biology commutative algebra analysis, probability, and PDEs topology applied mathematics mathematics education
This graduate textbook provides a detailed introduction to the probabilistic interpretation of nonlinear potential theory, relying on the recently introduced notion of tug-of-war games with noise.The book explores both basic and more advanced constructions, carefully explaining the parallel between linear and nonlinear cases. The presentation is self-contained with many exercises, making the book suitable as a textbook for a graduate course, as well as for self-study. Extensive background and auxiliary material allow the tailoring of courses to individual student levels.
|
You may like...
|