![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
Mathematica by Example, Fifth Edition is an essential desk reference for the beginning Mathematica user, providing step-by-step instructions on achieving results from this powerful software tool. The book fully accounts for the dramatic changes to functionality and visualization capabilities in the most recent version of Mathematica (10.4). It accommodates the full array of new extensions in the types of data and problems that Mathematica can immediately handle, including cloud services and systems, geographic and geometric computation, dynamic visualization, interactive applications and other improvements. It is an ideal text for scientific students, researchers and aspiring programmers seeking further understanding of Mathematica. Written by seasoned practitioners with a view to practical implementation and problem-solving, the book's pedagogy is delivered clearly and without jargon using representative biological, physical and engineering problems. Code is provided on an ancillary website to support the use of Mathematica across diverse applications.
Introductory Differential Equations, Sixth Edition provides accessible explanations and many robust sample problems. This valuable resource is appropriate for a first semester course in introductory ordinary differential equations (including Laplace transforms); for a second course in Fourier series and boundary value problems; and for students with no background on the subject. The book provides the foundations to assist students in learning not only how to read and understand differential equations, but also how to read technical material in more advanced texts as they progress through their studies.
Mathematica by Example, Sixth Edition is an essential resource for the Mathematica user, providing step-by-step instructions on achieving results from this powerful software tool. The book fully accounts for the changes to functionality and visualization capabilities and accomodates the full array of new extensions in the types of data and problems that Mathematica can immediately handle, including cloud services and systems, geographic and geometric computation, dynamic visualization, interactive applications and other improvements. It is an ideal text for scientific students, researchers, and aspiring programmers seeking further understanding of Mathematica. Written by seasoned practitioners with a view to practical implementation and problem-solving, the book's pedagogy is delivered clearly and without jargon using representative biological, physical and engineering problems. Code is provided on an ancillary website to support the use of Mathematica across diverse applications and subject areas.
Differential Equations with Mathematica, Fifth Edition uses the fundamental concepts of the popular platform to solve (analytically, numerically, and/or graphically) differential equations of interest to students, instructors, and scientists. Mathematica's diversity makes it particularly well suited to performing calculations encountered when solving many ordinary and partial differential equations. In some cases, Mathematica's built-in functions can immediately solve a differential equation by providing an explicit, implicit, or numerical solution. In other cases, Mathematica can be used to perform the calculations encountered when solving a differential equation. Because one goal of elementary differential equations courses is to introduce students to basic methods and algorithms so that they gain proficiency in them, nearly every topic covered this book introduces basic commands, also including typical examples of their application. A study of differential equations relies on concepts from calculus and linear algebra, so this text also includes discussions of relevant commands useful in those areas. In many cases, seeing a solution graphically is most meaningful, so the book relies heavily on Mathematica's outstanding graphics capabilities.
Introductory Differential Equations, Fifth Edition provides accessible explanations and new, robust sample problems. This valuable resource is appropriate for a first semester course in introductory ordinary differential equations (including Laplace transforms), but is also ideal for a second course in Fourier series and boundary value problems, and for students with no background on the subject. The book provides the foundations to assist students in learning not only how to read and understand differential equations, but also how to read technical material in more advanced texts as they progress through their studies.
Differential Equations with Mathematica, Fourth Edition is a supplementing reference which uses the fundamental concepts of the popular platform to solve (analytically, numerically, and/or graphically) differential equations of interest to students, instructors, and scientists. Mathematica's diversity makes it particularly well suited to performing calculations encountered when solving many ordinary and partial differential equations. In some cases, Mathematica's built-in functions can immediately solve a differential equation by providing an explicit, implicit, or numerical solution. In other cases, mathematica can be used to perform the calculations encountered when solving a differential equation. Because one goal of elementary differential equations courses is to introduce students to basic methods and algorithms so that they gain proficiency in them, nearly every topic covered this book introduces basic commands, also including typical examples of their application. A study of differential equations relies on concepts from calculus and linear algebra, so this text also includes discussions of relevant commands useful in those areas. In many cases, seeing a solution graphically is most meaningful, so the book relies heavily on Mathematica's outstanding graphics capabilities.
|
![]() ![]() You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|