Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This detailed book brings together a collection of methodologies, from the most basic to the more complex, that provides researchers with a platform they can use to embark on a cartilage research career. To aid in the search for novel therapies for cartilage regeneration, this volume addresses 3D cartilage models, challenges associated with RNA and protein extraction, imaging, gene transfer, as well as stable differentiation and variations in cell phenotype from different tissue origins. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Cartilage Tissue Engineering serves as an ideal guide for researchers working to advance the vital study of cartilage biology and repair.
Whether the question is one of basic cell survival, or whether it is being used to correlate cell number to some other factor such as matrix synthesis, an estimate of cell viability is universally required. In Mammalian Cell Viability: Methods and Protocols, experts in the field describe methods from the most basic which can be performed in any laboratory, to some which require specific pieces of equipment. Initially focusing on methods for monolayer and suspension cells, later chapters describe methods for determining viability within tissue sections and 3 dimensional culture systems. Finally, methods requiring highly specialized equipment are described in order to explain what is possible. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and vital tips on troubleshooting and avoiding known pitfalls. Practical and adaptable, Mammalian Cell Viability: Methods and Protocols serves as a self-contained laboratory manual useful to both experienced researchers and those new to this incredibly important and influential field.
Whether the question is one of basic cell survival, or whether it is being used to correlate cell number to some other factor such as matrix synthesis, an estimate of cell viability is universally required. In Mammalian Cell Viability: Methods and Protocols, experts in the field describe methods from the most basic which can be performed in any laboratory, to some which require specific pieces of equipment. Initially focusing on methods for monolayer and suspension cells, later chapters describe methods for determining viability within tissue sections and 3 dimensional culture systems. Finally, methods requiring highly specialized equipment are described in order to explain what is possible. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and vital tips on troubleshooting and avoiding known pitfalls. Practical and adaptable, Mammalian Cell Viability: Methods and Protocols serves as a self-contained laboratory manual useful to both experienced researchers and those new to this incredibly important and influential field.
Developmental Biology and Musculoskeletal Tissue Engineering: Principles and Applications focuses on the regeneration of orthopedic tissue, drawing upon expertise from developmental biologists specializing in orthopedic tissues and tissue engineers who have used and applied developmental biology approaches. Musculoskeletal tissues have an inherently poor repair capacity, and thus biologically-based treatments that can recapitulate the native tissue properties are desirable. Cell- and tissue-based therapies are gaining ground, but basic principles still need to be addressed to ensure successful development of clinical treatments. Written as a source of information for practitioners and those with a nascent interest, it provides background information and state-of-the-art solutions and technologies. Recent developments in orthopedic tissue engineering have sought to recapitulate developmental processes for tissue repair and regeneration, and such developmental-biology based approaches are also likely to be extremely amenable for use with more primitive stem cells.
|
You may like...
|