Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
The 3rd edition of this practical, hands-on book discusses the range of launch vehicles in use today throughout the world, and includes the very latest details of some of the advanced propulsion systems currently being developed. The author covers the fundamentals of the subject, from the basic principles of rocket propulsion and vehicle dynamics through the theory and practice of liquid and solid propellant motors, to new and future developments. The didactic value of the early chapters on the basics of rocket propulsion, by re-working the derivations and updating the examples will be enhanced. The 3rd edition will stick to the same principle of providing a serious exposition of the principles and practice of rocket propulsion, but from the point of view of the user and enquirer who is not an engineering specialist. Most chapters will remain substantially the same as the second edition; they will be updated where necessary and errata corrected. In particular the new chapters added for the second edition, on Electric and Nuclear propulsion will remain substantially the same. In addition to general revision, updating and the correction of errata on all chapters, this updated edition will detail a number of new developments in the field Chapter 3 on Liquid propellant rocket engines will have new sections on air breathing engines and on new engines and propellants for the human exploration program. Chapter 8 will now de-emphasize the SSTO concepts, not longer seen as promising, and include new sections on variable thrust engines, again for human exploration. Other new developments following the announcement and subsequent development of NASA s new man-rated launcher, the ARES, and its Constellation vehicle set. Also covered will be sub-orbital space tourist vehicles and the new rocket engines, which have been developed for them. A new chapter on man-rated launchers and their important characteristics will detail this. New interest in Lunar exploration and the need to supply Lunar bases exposes the requirement for high efficiency engines for Lunar transportation and storage of high energy propellants like liquid oxygen and liquid hydrogen. New engines designed for in-space transportation and Lunar landing and departure will be added to the relevant chapters."
The 3rd edition of this practical, hands-on book discusses the range of launch vehicles in use today throughout the world, and includes the very latest details of some of the advanced propulsion systems currently being developed. The author covers the fundamentals of the subject, from the basic principles of rocket propulsion and vehicle dynamics through the theory and practice of liquid and solid propellant motors, to new and future developments. The didactic value of the early chapters on the basics of rocket propulsion, by re-working the derivations and updating the examples will be enhanced. The 3rd edition will stick to the same principle of providing a serious exposition of the principles and practice of rocket propulsion, but from the point of view of the user and enquirer who is not an engineering specialist. Most chapters will remain substantially the same as the second edition; they will be updated where necessary and errata corrected. In particular the new chapters added for the second edition, on Electric and Nuclear propulsion will remain substantially the same. In addition to general revision, updating and the correction of errata on all chapters, this updated edition will detail a number of new developments in the field Chapter 3 on Liquid propellant rocket engines will have new sections on air breathing engines and on new engines and propellants for the human exploration program. Chapter 8 will now de-emphasize the SSTO concepts, not longer seen as promising, and include new sections on variable thrust engines, again for human exploration. Other new developments following the announcement and subsequent development of NASA s new man-rated launcher, the ARES, and its Constellation vehicle set. Also covered will be sub-orbital space tourist vehicles and the new rocket engines, which have been developed for them. A new chapter on man-rated launchers and their important characteristics will detail this. New interest in Lunar exploration and the need to supply Lunar bases exposes the requirement for high efficiency engines for Lunar transportation and storage of high energy propellants like liquid oxygen and liquid hydrogen. New engines designed for in-space transportation and Lunar landing and departure will be added to the relevant chapters."
What will be the next ‘giant leap’ in space exploration? Could it be a manned expedition to the Red Planet Mars? In this challenging and thought-provoking book, Martin Turner shows how modern technologies not only make such a journey possible, but that advances in those technologies will make it more probable, and that the first human mission to Mars will happen within our lifetime. The latest rocket propulsion, spacecraft technology and planned developments in nuclear and electric propulsion technologies are the key factors which will enable this journey to take place. Of particular importance is the necessity to transport cargo to Mars, and to provide essential life support for the crew food, water, air and fuel to enable the return journey. Expedition Mars challenges us to face the fact that, sooner or later, humans will have to make a choice: stay here on Earth or explore the Solar System beyond.
The first mission to Mars raises the question: How will a permanent base on Mars be established? Although this is some time ahead, the opportunities and challenges posed by Mars Base One are already clear: the great distance from Earth; the necessity for self sufficiency; the challenges of long term living on Mars; how to establish a two way traffic between the planets; minimise the cost of maintenance from Earth; and importantly, keep political support over a long period. These are all generic challenges with which we are familiar, or to which there are familiar and well tried solutions for terrestrial bases and colonies. To translate these solutions to the Mars base requires the application of known science and engineering. Focusing on the near future, the theme of the book will be how to establish a base on Mars and maintain it with minimum cost and risk as well as examining future life in the base, what colonists will do there, the possibilities of trade and export, legal issues, human issues, birth, life, and death on Mars.
|
You may like...
|