Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book provides a coherent framework for understanding shrinkage estimation in statistics. The term refers to modifying a classical estimator by moving it closer to a target which could be known a priori or arise from a model. The goal is to construct estimators with improved statistical properties. The book focuses primarily on point and loss estimation of the mean vector of multivariate normal and spherically symmetric distributions. Chapter 1 reviews the statistical and decision theoretic terminology and results that will be used throughout the book. Chapter 2 is concerned with estimating the mean vector of a multivariate normal distribution under quadratic loss from a frequentist perspective. In Chapter 3 the authors take a Bayesian view of shrinkage estimation in the normal setting. Chapter 4 introduces the general classes of spherically and elliptically symmetric distributions. Point and loss estimation for these broad classes are studied in subsequent chapters. In particular, Chapter 5 extends many of the results from Chapters 2 and 3 to spherically and elliptically symmetric distributions. Chapter 6 considers the general linear model with spherically symmetric error distributions when a residual vector is available. Chapter 7 then considers the problem of estimating a location vector which is constrained to lie in a convex set. Much of the chapter is devoted to one of two types of constraint sets, balls and polyhedral cones. In Chapter 8 the authors focus on loss estimation and data-dependent evidence reports. Appendices cover a number of technical topics including weakly differentiable functions; examples where Stein's identity doesn't hold; Stein's lemma and Stokes' theorem for smooth boundaries; harmonic, superharmonic and subharmonic functions; and modified Bessel functions.
The present volume consists of papers written by students, colleagues and collaborators of Sreenivasa Rao Jammalamadaka from various countries, and covers a variety of research topics which he enjoys and contributed immensely to.
Now in its second edition, this handbook collects authoritative contributions on modern methods and tools in statistical bioinformatics with a focus on the interface between computational statistics and cutting-edge developments in computational biology. The three parts of the book cover statistical methods for single-cell analysis, network analysis, and systems biology, with contributions by leading experts addressing key topics in probabilistic and statistical modeling and the analysis of massive data sets generated by modern biotechnology. This handbook will serve as a useful reference source for students, researchers and practitioners in statistics, computer science and biological and biomedical research, who are interested in the latest developments in computational statistics as applied to computational biology.
This volume discusses an important area of statistics and highlights the most important statistical advances. It is divided into four sections: statistics in the life and medical sciences, business and social science, the physical sciences and engineering, and theory and methods of statistics.
The present volume consists of papers written by students, colleagues and collaborators of Sreenivasa Rao Jammalamadaka from various countries, and covers a variety of research topics which he enjoys and contributed immensely to.
Exactly what is the state of the art in statistics as we move forward into the 21st century? What promises, what trends does its future hold? Through the reflections of 70 of the world's leading statistical methodologists, researchers, theorists, and practitioners, Statistics in the 21st Century answers those questions.
|
You may like...
View from the Mountaintop: A Journey…
Lee Ann Fagan Dzelzkalns
Paperback
Die Maan Is Swart - Gedigte Van Adam…
Adam Small, Ronelda Kamfer
Paperback
(1)
|