Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 10 of 10 matches in All Departments
The book describes how curvature measures can be introduced for certain classes of sets with singularities in Euclidean spaces. Its focus lies on sets with positive reach and some extensions, which include the classical polyconvex sets and piecewise smooth submanifolds as special cases. The measures under consideration form a complete system of certain Euclidean invariants. Techniques of geometric measure theory, in particular, rectifiable currents are applied, and some important integral-geometric formulas are derived. Moreover, an approach to curvatures for a class of fractals is presented, which uses approximation by the rescaled curvature measures of small neighborhoods. The book collects results published during the last few decades in a nearly comprehensive way.
This up-to-date monograph, providing an up-to-date overview of the field of Hepatitis Prevention and Treatment, includes contributions from internationally recognized experts on viral hepatitis, and covers the current state of knowledge and practice regarding the molecular biology, immunology, biochemistry, pharmacology and clinical aspects of chronic HBV and HCV infection. The book provides the latest information, with sufficient background and discussion of the literature to benefit the newcomer to the field.
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
The second conference on Fractal Geometry and Stochastics was held at Greifs wald/Koserow, Germany from August 28 to September 2, 1998. Four years had passed after the first conference with this theme and during this period the interest in the subject had rapidly increased. More than one hundred mathematicians from twenty-two countries attended the second conference and most of them presented their newest results. Since it is impossible to collect all these contributions in a book of moderate size we decided to ask the 13 main speakers to write an account of their subject of interest. The corresponding articles are gathered in this volume. Many of them combine a sketch of the historical development with a thorough discussion of the most recent results of the fields considered. We believe that these surveys are of benefit to the readers who want to be introduced to the subject as well as to the specialists. We also think that this book reflects the main directions of research in this thriving area of mathematics. We express our gratitude to the Deutsche Forschungsgemeinschaft whose financial support enabled us to organize the conference. The Editors Introduction Fractal geometry deals with geometric objects that show a high degree of irregu larity on all levels of magnitude and, therefore, cannot be investigated by methods of classical geometry but, nevertheless, are interesting models for phenomena in physics, chemistry, biology, astronomy and other sciences."
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
The book describes how curvature measures can be introduced for certain classes of sets with singularities in Euclidean spaces. Its focus lies on sets with positive reach and some extensions, which include the classical polyconvex sets and piecewise smooth submanifolds as special cases. The measures under consideration form a complete system of certain Euclidean invariants. Techniques of geometric measure theory, in particular, rectifiable currents are applied, and some important integral-geometric formulas are derived. Moreover, an approach to curvatures for a class of fractals is presented, which uses approximation by the rescaled curvature measures of small neighborhoods. The book collects results published during the last few decades in a nearly comprehensive way.
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
Fractal geometry is a new and promising field for researchers from different disciplines such as mathematics, physics, chemistry, biology and medicine. It is used to model complicated natural and technical phenomena. The most convincing models contain an element of randomness so that the combination of fractal geometry and stochastics arises in between these two fields. It contains contributions by outstanding mathematicians and is meant to highlight the principal directions of research in the area. The contributors were the main speakers attending the conference "Fractal Geometry and Stochastics" held at Finsterbergen, Germany, in June 1994. This was the first international conference ever to be held on the topic. The book is addressed to mathematicians and other scientists who are interested in the mathematical theory concerning: * Fractal sets and measures * Iterated function systems * Random fractals * Fractals and dynamical systems, and * Harmonic analysis on fractals. The reader will be introduced to the most recent results in these subjects. Researchers and graduate students alike will benefit from the clear expositions.
Fractal geometry is used to model complicated natural and technical phenomena in various disciplines like physics, biology, finance, and medicine. Since most convincing models contain an element of randomness, stochastics enters the area in a natural way. This book documents the establishment of fractal geometry as a substantial mathematical theory. As in the previous volumes, which appeared in 1998 and 2000, leading experts known for clear exposition were selected as authors. They survey their field of expertise, emphasizing recent developments and open problems. Main topics include multifractal measures, dynamical systems, stochastic processes and random fractals, harmonic analysis on fractals.
A collection of contributions by outstanding mathematicians, highlighting the principal directions of research on the combination of fractal geometry and stochastic methods. Clear expositions introduce the most recent results and problems on these subjects and give an overview of their historical development.
|
You may like...
|