Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Master the design and operation of perfusion cell cultures with this authoritative reference. Discover the current state-of-the-art in the design and operation of continuous bioreactors, with emphasis on mammalian cell cultures for producing therapeutic proteins. Topics include the current market for recombinant therapeutic proteins, current industry challenges and the potential contribution of continuous manufacturing. Provides coverage of every step of process development and reactor operation, including small scale screening to lab-scale and scale-up to manufacturing scale. Illustrated through real-life case studies, this is a perfect resource for groups active in the cell culture field, as well as graduate students in areas such as chemical engineering, biotechnology, chemistry and biology, and to those in the pharmaceutical industry, particularly biopharma, biotechnology and food or agro industry.
The behavior of a chemical system is affected by many physicochemical parameters. The sensitivity of the system's behavior to changes in parameters is known as parametric sensitivity. When a system operates in a parametrically sensitive region, its performance becomes unreliable and changes sharply with small variations in parameters. Thus, it is of great value to those who design and operate chemical systems to be able to analyze and predict their sensitivity behavior. This book is the first to provide a thorough treatment of the concept of parametric sensitivity and the mathematical tool it generated, sensitivity analysis. The emphasis is on applications to real situations. The book begins with definitions of various sensitivity indices and describes the numerical techniques most commonly used for their evaluation. Extensively illustrated chapters discuss sensitivity analysis in a variety of chemical reactors--batch, tubular, continuous-flow, fixed-bed--and in combustion systems, mechanistic studies, air pollution, and metabolic processes. Seniors and graduate students in various fields of science and engineering, researchers, and practicing engineers will welcome this valuable resource.
Heterogeneous catalysis is widely used in chemical, refinery, and pollution-control processes. For this reason, achieving optimal performance of catalysts is a significant issue for chemical engineers and chemists. This book addresses the question of how catalytic material should be distributed inside a porous support in order to obtain optimal performance. It treats single and multiple reaction systems, isothermal and nonisothermal conditions, pellets, monoliths, fixed-bed reactors, and membrane reactors. The effects of physicochemical and operating parameters are analyzed to gain insight into the underlying phenomena governing the performance of optimally designed catalysts. Throughout, the authors offer a balanced treatment of theory and experiment. Particular attention is given to problems of commercial importance. With its thorough treatment of the design, preparation, and utilization of supported catalysts, this book will be an ideal resource for graduate students, researchers, and practising engineers and chemists.
This is a text designed to provide a frim grounding in mathematical methods for chemical engineering students and researchers in academia and industry. Mathematical Methods in Chemical Engineering builds on the reader's previous knowledge of calculus, differential equations, and linear algebra. Varma and Morbidelli offer an integrated treatment of linear operator theory from determinants through partial differential equations, and feature extensive chapters on both ordinary differential equations and perturbation methods. Numerous high-quality diagrams and examples from chemical engineering illustrate the textual material and enhance the reader's understanding of complex mathematical systems.
Since heterogeneous catalysis is widely used in chemical, refinery, and pollution-control processes, achieving optimal catalytic performance is a significant issue for chemical engineers and chemists. This book addresses the question of how catalytic material should be distributed inside a porous support to obtain optimal performance. It treats single and multiple reaction systems, isothermal and nonisothermal conditions, pellets, monoliths, fixed-bed reactors, and membrane reactors. The effects of physicochemical and operating parameters are analyzed to gain insight into the underlying phenomena governing the performance of optimally designed catalysts. Throughout, the authors offer a balanced treatment of theory and experiment and stress problems of commercial importance.
This innovative reference provides a coherent and critical view on the potential benefits of a transition from batch to continuous processes in the biopharmaceutical industry, with the main focus on chromatography. It also covers the key topics of protein stability and protein conjugation, addressing the chemical reaction and purification aspects together with their integration. This book offers a fine balance between theoretical modelling and illustrative case studies, between fundamental concepts and applied examples from the academic and industrial literature. Scientists interested in the design of biopharmaceutical processes will find useful practical methodologies, in particular for single-column and multi-column chromatographic processes.
|
You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|