![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
This book is open access under a CC BY-NC 2.5 license. This book describes the extensive contributions made toward the advancement of human assessment by scientists from one of the world's leading research institutions, Educational Testing Service. The book's four major sections detail research and development in measurement and statistics, education policy analysis and evaluation, scientific psychology, and validity. Many of the developments presented have become de-facto standards in educational and psychological measurement, including in item response theory (IRT), linking and equating, differential item functioning (DIF), and educational surveys like the National Assessment of Educational Progress (NAEP), the Programme of international Student Assessment (PISA), the Progress of International Reading Literacy Study (PIRLS) and the Trends in Mathematics and Science Study (TIMSS). In addition to its comprehensive coverage of contributions to the theory and methodology of educational and psychological measurement and statistics, the book gives significant attention to ETS work in cognitive, personality, developmental, and social psychology, and to education policy analysis and program evaluation. The chapter authors are long-standing experts who provide broad coverage and thoughtful insights that build upon decades of experience in research and best practices for measurement, evaluation, scientific psychology, and education policy analysis. Opening with a chapter on the genesis of ETS and closing with a synthesis of the enormously diverse set of contributions made over its 70-year history, the book is a useful resource for all interested in the improvement of human assessment.
This volume offers contributions by thought leaders from a variety of disciplines and different perspectives, which are brought together in a final chapter. The contributions give insight in the role of large-scale international assessments as change agents. As national leaders recognize the growing importance of human capital and how it is distributed, policymakers, economists and decision makers in education have become increasingly interested in results from comparative international surveys. These assessments offer important information on the development of cognitive skills and the consequences of differences in the distribution of these skills. Researchers use the data to assess the role of human capital in predicting outcomes and to identify factors that may contribute to the development of more human capital. An invaluable resource for researchers in international comparative education, policy studies, economics, civics education, educational technology, and policy makers.
Advancing Natural Language Processing in Educational Assessment examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond. Spanning historical context, validity and fairness issues, emerging technologies, and implications for feedback and personalization, these chapters represent the most robust treatment yet about NLP for education measurement researchers, psychometricians, testing professionals, and policymakers.
Winner of the 2017 AERA Division D Significant Contribution to Educational Measurement and Research Methodology Award! Technological and statistical advances, along with a strong interest in gathering more information about the state of our educational systems, have made it possible to assess more students, in more countries, more often, and in more subject domains. The Handbook of International Large-Scale Assessment: Background, Technical Issues, and Methods of Data Analysis brings together recognized scholars in the field of ILSA, behavioral statistics, and policy to develop a detailed guide that goes beyond database user manuals. After highlighting the importance of ILSA data to policy and research, the book reviews methodological aspects and features of the studies based on operational considerations, analytics, and reporting. The book then describes methods of interest to advanced graduate students, researchers, and policy analysts who have a good grounding in quantitative methods, but who are not necessarily quantitative methodologists. In addition, it provides a detailed exposition of the technical details behind these assessments, including the test design, the sampling framework, and estimation methods, with a focus on how these issues impact analysis choices.
This handbook provides an overview of major developments around diagnostic classification models (DCMs) with regard to modeling, estimation, model checking, scoring, and applications. It brings together not only the current state of the art, but also the theoretical background and models developed for diagnostic classification. The handbook also offers applications and special topics and practical guidelines how to plan and conduct research studies with the help of DCMs. Commonly used models in educational measurement and psychometrics typically assume a single latent trait or at best a small number of latent variables that are aimed at describing individual differences in observed behavior. While this allows simple rankings of test takers along one or a few dimensions, it does not provide a detailed picture of strengths and weaknesses when assessing complex cognitive skills. DCMs, on the other hand, allow the evaluation of test taker performance relative to a potentially large number of skill domains. Most diagnostic models provide a binary mastery/non-mastery classification for each of the assumed test taker attributes representing these skill domains. Attribute profiles can be used for formative decisions as well as for summative purposes, for example in a multiple cut-off procedure that requires mastery on at least a certain subset of skills. The number of DCMs discussed in the literature and applied to a variety of assessment data has been increasing over the past decades, and their appeal to researchers and practitioners alike continues to grow. These models have been used in English language assessment, international large scale assessments, and for feedback for practice exams in preparation of college admission testing, just to name a few. Nowadays, technology-based assessments provide increasingly rich data on a multitude of skills and allow collection of data with respect to multiple types of behaviors. Diagnostic models can be understood as an ideal match for these types of data collections to provide more in-depth information about test taker skills and behavioral tendencies.
Advancing Natural Language Processing in Educational Assessment examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond. Spanning historical context, validity and fairness issues, emerging technologies, and implications for feedback and personalization, these chapters represent the most robust treatment yet about NLP for education measurement researchers, psychometricians, testing professionals, and policymakers.
Winner of the 2017 AERA Division D Significant Contribution to Educational Measurement and Research Methodology Award! Technological and statistical advances, along with a strong interest in gathering more information about the state of our educational systems, have made it possible to assess more students, in more countries, more often, and in more subject domains. The Handbook of International Large-Scale Assessment: Background, Technical Issues, and Methods of Data Analysis brings together recognized scholars in the field of ILSA, behavioral statistics, and policy to develop a detailed guide that goes beyond database user manuals. After highlighting the importance of ILSA data to policy and research, the book reviews methodological aspects and features of the studies based on operational considerations, analytics, and reporting. The book then describes methods of interest to advanced graduate students, researchers, and policy analysts who have a good grounding in quantitative methods, but who are not necessarily quantitative methodologists. In addition, it provides a detailed exposition of the technical details behind these assessments, including the test design, the sampling framework, and estimation methods, with a focus on how these issues impact analysis choices.
This volume offers contributions by thought leaders from a variety of disciplines and different perspectives, which are brought together in a final chapter. The contributions give insight in the role of large-scale international assessments as change agents. As national leaders recognize the growing importance of human capital and how it is distributed, policymakers, economists and decision makers in education have become increasingly interested in results from comparative international surveys. These assessments offer important information on the development of cognitive skills and the consequences of differences in the distribution of these skills. Researchers use the data to assess the role of human capital in predicting outcomes and to identify factors that may contribute to the development of more human capital. An invaluable resource for researchers in international comparative education, policy studies, economics, civics education, educational technology, and policy makers.
This book examines extensions of the Rasch model, one of the most researched and applied models in educational research and social science. This collection contains 22 chapters by some of the most renowned international experts in the field. They cover topics ranging from general model extensions to applications in fields as diverse as cognition, personality, organizational and sports psychology, and health sciences and education.
|
![]() ![]() You may like...
The Gift of Who I Am - Living Prayer…
Christine Black Cummings
Paperback
Gaming and Technology Addiction…
Information Reso Management Association
Hardcover
R8,366
Discovery Miles 83 660
|