![]() |
![]() |
Your cart is empty |
||
Showing 1 - 17 of 17 matches in All Departments
Statistics has been a main tool in almost every field of activity and an essential part of applied scientific work, supporting conclusions and offering insights into new uses for established methodologies, thus making it a valuable resource in looking for faceless facts. Model construction describing populations or phenomena subject to randomness use a wide range of methods. Data collection provides the basis for modelling and assumption verification. Modelling must be conducted using suitable techniques that give researchers the means to search for hidden facts or behaviours. This may be addressed by fitting pre-defined shapes and distributions to the data or by allowing the data to reveal its intrinsic properties by using nonparametric methods. This volume contains a selection of contributions presented at the XVIII Annual Congress of the Portuguese Statistical Society.
The contributions gathered in this book focus on modern methods for statistical learning and modeling in data analysis and present a series of engaging real-world applications. The book covers numerous research topics, ranging from statistical inference and modeling to clustering and factorial methods, from directional data analysis to time series analysis and small area estimation. The applications reflect new analyses in a variety of fields, including medicine, finance, engineering, marketing and cyber risk. The book gathers selected and peer-reviewed contributions presented at the 12th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2019), held in Cassino, Italy, on September 11-13, 2019. CLADAG promotes advanced methodological research in multivariate statistics with a special focus on data analysis and classification, and supports the exchange and dissemination of ideas, methodological concepts, numerical methods, algorithms, and computational and applied results. This book, true to CLADAG's goals, is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification.
This edited volume focuses on the latest developments in classification and data science and covers a wide range of topics in the context of data analysis and related areas, e.g. the analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, data visualization, multivariate statistical methods, and various applications to real data in the social sciences, medical sciences, and other disciplines. In addition to sharing theoretical and methodological findings, the book shows how to apply the proposed methods to a variety of problems - e.g. in consumer behavior, decision-making, marketing data and social network structures. Both methodological aspects and applications to a wide range of areas such as economics, behavioral science, marketing science, management science and the social sciences are covered. The book is chiefly intended for researchers and practitioners who are interested in the latest developments and practical applications in these fields, as well as applied statisticians and data analysts. Its combination of methodological advances with a wide range of real-world applications gathered from several fields makes it of unique value in helping readers solve their research problems.
This book of peer-reviewed contributions presents the latest findings in classification, statistical learning, data analysis and related areas, including supervised and unsupervised classification, clustering, statistical analysis of mixed-type data, big data analysis, statistical modeling, graphical models and social networks. It covers both methodological aspects as well as applications to a wide range of fields such as economics, architecture, medicine, data management, consumer behavior and the gender gap. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification. It gathers selected and peer-reviewed contributions presented at the 11th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2017), held in Milan, Italy, on September 13-15, 2017.
This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pula (Cagliari), Italy, October 8-10, 2015.
This edited volume on the latest advances in data science covers a wide range of topics in the context of data analysis and classification. In particular, it includes contributions on classification methods for high-dimensional data, clustering methods, multivariate statistical methods, and various applications. The book gathers a selection of peer-reviewed contributions presented at the Fifteenth Conference of the International Federation of Classification Societies (IFCS2015), which was hosted by the Alma Mater Studiorum, University of Bologna, from July 5 to 8, 2015.
Statistics has been a main tool in almost every field of activity and an essential part of applied scientific work, supporting conclusions and offering insights into new uses for established methodologies, thus making it a valuable resource in looking for faceless facts. Model construction describing populations or phenomena subject to randomness use a wide range of methods. Data collection provides the basis for modelling and assumption verification. Modelling must be conducted using suitable techniques that give researchers the means to search for hidden facts or behaviours. This may be addressed by fitting pre-defined shapes and distributions to the data or by allowing the data to reveal its intrinsic properties by using nonparametric methods. This volume contains a selection of contributions presented at the XVIII Annual Congress of the Portuguese Statistical Society.
This edited volume focuses on recent research results in classification, multivariate statistics and machine learning and highlights advances in statistical models for data analysis. The volume provides both methodological developments and contributions to a wide range of application areas such as economics, marketing, education, social sciences and environment. The papers in this volume were first presented at the 9th biannual meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in September 2013 at the University of Modena and Reggio Emilia, Italy.
This book presents new developments in data analysis, classification and multivariate statistics, and in their algorithmic implementation. The volume offers contributions to the theory of clustering and discrimination, multidimensional data analysis, data mining, and robust statistics with a special emphasis on the novel Forward Search approach. Many papers provide significant insight in a wide range of fields of application. Customer satisfaction and service evaluation are two examples of such emerging fields.
International Association for Statistical Computing The International Association for Statistical Computing (IASC) is a Section of the International Statistical Institute. The objectives of the Association are to foster world-wide interest in e?ective statistical computing and to - change technical knowledge through international contacts and meetings - tween statisticians, computing professionals, organizations, institutions, g- ernments and the general public. The IASC organises its own Conferences, IASC World Conferences, and COMPSTAT in Europe. The 17th Conference of ERS-IASC, the biennial meeting of European - gional Section of the IASC was held in Rome August 28 - September 1, 2006. This conference took place in Rome exactly 20 years after the 7th COMP- STAT symposium which was held in Rome, in 1986. Previous COMPSTAT conferences were held in: Vienna (Austria, 1974); West-Berlin (Germany, 1976); Leiden (The Netherlands, 1978); Edimbourgh (UK, 1980); Toulouse (France, 1982); Prague (Czechoslovakia, 1984); Rome (Italy, 1986); Copenhagen (Denmark, 1988); Dubrovnik (Yugoslavia, 1990); Neuch atel (Switzerland, 1992); Vienna (Austria,1994); Barcelona (Spain, 1996);Bristol(UK,1998);Utrecht(TheNetherlands,2000);Berlin(Germany, 2002); Prague (Czech Republic, 2004).
This volume contains revised versions of selected papers presented during the biannual meeting of the Classification and Data Analysis Group of SocietA Italiana di Statistica, which was held in Bologna, September 22-24, 2003. The scientific program of the conference included 80 contributed papers. Moreover it was possible to recruit six internationally renowned invited spe- ers for plenary talks on their current research works regarding the core topics of IFCS (the International Federation of Classification Societies) and Wo- gang Gaul and the colleagues of the GfKl organized a session. Thus, the conference provided a large number of scientists and experts from home and abroad with an attractive forum for discussions and mutual exchange of knowledge. The talks in the different sessions focused on methodological developments in supervised and unsupervised classification and in data analysis, also p- viding relevant contributions in the context of applications. This suggested the presentation of the 43 selected papers in three parts as follows: CLASSIFICATION AND CLUSTERING Non parametric classification Clustering and dissimilarities MULTIVARIATE STATISTICS AND DATA ANALYSIS APPLIED MULTIVARIATE STATISTICS Environmental data Microarray data Behavioural and text data Financial data We wish to express our gratitude to the authors whose enthusiastic p- ticipation made the meeting possible. We are very grateful to the reviewers for the time spent in their professional reviewing work. We would also like to extend our thanks to the chairpersons and discussants of the sessions: their comments and suggestions proved very stimulating both for the authors and the audience.
The volume presents new developments in data analysis and classification and gives an overview of the state of the art in these scientific fields and relevant applications. Areas that receive considerable attention in the book are clustering, discrimination, data analysis, and statistics, as well as applications in economics, biology, and medicine. The reader will find material on recent technical and methodological developments and a large number of application papers demonstrating the usefulness of the newly developed techniques.
This volume contains a selection of papers presented at the biannual meeting of the Classification and Data Analysis Group of Societa Italiana di Statistica, which was held in Rome, July 5-6, 1999. From the originally submitted papers, a careful review process led to the selection of 45 papers presented in four parts as follows: CLASSIFICATION AND MULTIDIMENSIONAL SCALING Cluster analysis Discriminant analysis Proximity structures analysis and Multidimensional Scaling Genetic algorithms and neural networks MUL TIV ARIA TE DATA ANALYSIS Factorial methods Textual data analysis Regression Models for Data Analysis Nonparametric methods SPATIAL AND TIME SERIES DATA ANALYSIS Time series analysis Spatial data analysis CASE STUDIES INTERNATIONAL FEDERATION OF CLASSIFICATION SOCIETIES The International Federation of Classification Societies (IFCS) is an agency for the dissemination of technical and scientific information concerning classification and data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) from the following Scientific Societies and Groups: British Classification Society -BCS; Classification Society of North America - CSNA; Gesellschaft fUr Klassifikation - GfKI; Japanese Classification Society -JCS; Classification Group of Italian Statistical Society - CGSIS; Societe Francophone de Classification -SFC. Now the IFCS includes also the following Societies: Dutch-Belgian Classification Society - VOC; Polish Classification Society -SKAD; Associayao Portuguesa de Classificayao e Analise de Dados -CLAD; Korean Classification Society -KCS; Group-at-Large.
International Federation of Classification Societies The International Federation of Classification Societies (lFCS) is an agency for the dissemination of technical and scientific information concerning classification and multivariate data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) by the following Scientific Societies and Groups: - British Classification Society - BCS - Classification Society of North America - CSNA - Gesellschaft fUr Klassification - GfKI - Japanese Classification Society - JCS - Classification Group ofItalian Statistical Society - CGSIS - Societe Francophone de Classification - SFC Now the IFCS includes also the following Societies: - Dutch-Belgian Classification Society - VOC - Polish Classification Section - SKAD - Portuguese Classification Association - CLAD - Group at Large - Korean Classification Society - KCS IFCS-98, the Sixth Conference of the International Federation of Classification Societies, was held in Rome, from July 21 to 24, 1998. Five preceding conferences were held in Aachen (Germany), Charlottesville (USA), Edinburgh (UK), Paris (France), Kobe (Japan).
International Federation of Classification Societies The International Federation of Classification Societies (IFCS) is an agency for the dissemination of technical and scientific information concerning classification and data analysis in the broad sense and in as wide a* range of applications as possible; founded in 1985 in Cambridge (UK) from the following Scientific Societies and Groups: British Classification Society -BCS; Classification Society of North America -CSNA; Gesellschaft fUr Klassifikation -GfKl; Japanese Classification Society -JCS; Classification Group of Italian Statistical Society - COSIS; Societe Francophone de Classification -SFC. Now the IFCS includes the following Societies: Dutch-Belgian Classification Society - VOC; Polish Classification Section - SKAD; Portuguese Classification Association - CLAD; Group-at-Large; Korean Classification Society -KCS. Biannual Meeting of the Classification and Data Analysis Group of SIS The biannual meeting of the Classification and Data Analysis Group of Societa Italiana di Statistica (SIS) was held in Pescara, July 3 -4, 1997. The 69 papers presented were divided in 17 sessions. Each session was organized by a chairperson with two invited speakers and two contributed papers from a call for papers. All the works were referred. Furthermore, during the meeting a discussant was provided for each session. A short version of the papers (4 pages) was.published before the conference.
This book focuses on methods and models in classification and data analysis and presents real-world applications at the interface with data science. Numerous topics are covered, ranging from statistical inference and modelling to clustering and factorial methods, and from directional data analysis to time series analysis and small area estimation. The applications deal with new developments in a variety of fields, including medicine, finance, engineering, marketing, and cyber risk. The contents comprise selected and peer-reviewed contributions presented at the 13th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society, CLADAG 2021, held (online) in Florence, Italy, on September 9–11, 2021. CLADAG promotes advanced methodological research in multivariate statistics with a special focus on data analysis and classification, and supports the exchange and dissemination of ideas, methodological concepts, numerical methods, algorithms, and computational and applied results at the interface between classification and data science.
This volume presents a selection of research papers on various topics at the interface of statistics and computer science. Emphasis is put on the practical applications of statistical methods in various disciplines, using machine learning and other computational methods. The book covers fields of research including the design of experiments, computational statistics, music data analysis, statistical process control, biometrics, industrial engineering, and econometrics. Gathering innovative, high-quality and scientifically relevant contributions, the volume was published in honor of Claus Weihs, Professor of Computational Statistics at TU Dortmund University, on the occasion of his 66th birthday.
|
![]() ![]() You may like...
A Discourse Intended to Commemorate the…
Jeremy 1744-1798 Belknap
Hardcover
R828
Discovery Miles 8 280
The Politics Of Custom - Chiefship…
John L. Comaroff, Jean Comaroff
Paperback
Careers - An Organisational Perspective
Melinde Coetzee, Dries Schreuder
Paperback
Screening Minors in Latin American…
Carolina Rocha, Georgia Seminet
Hardcover
R2,744
Discovery Miles 27 440
Introduction To Business Management
S. Rudansky-Kloppers, B. Erasmus, …
Paperback
R584
Discovery Miles 5 840
|