Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Mathematics is the language of physics, and over time physicists have developed their own dialect. The main purpose of this book is to bridge this language barrier, and introduce the readers to the beauty of mathematical physics. It shows how to combine the strengths of both approaches: physicists often arrive at interesting conjectures based on good intuition, which can serve as the starting point of interesting mathematics. Conversely, mathematicians can more easily see commonalities between very different fields (such as quantum mechanics and electromagnetism), and employ more advanced tools.Rather than focusing on a particular topic, the book showcases conceptual and mathematical commonalities across different physical theories. It translates physical problems to concrete mathematical questions, shows how to answer them and explains how to interpret the answers physically. For example, if two Hamiltonians are close, why are their dynamics similar?The book alternates between mathematics- and physics-centric chapters, and includes plenty of concrete examples from physics as well as 76 exercises with solutions. It exploits that readers from either end are familiar with some of the material already. The mathematics-centric chapters provide the necessary background to make physical concepts mathematically precise and establish basic facts. And each physics-centric chapter introduces physical theories in a way that is more friendly to mathematicians.As the book progresses, advanced material is sprinkled in to showcase how mathematics and physics augment one another. Some of these examples are based on recent publications and include material which has not been covered in other textbooks. This is to keep it interesting for the readers.
This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3-5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about possible future developments and applications of the theory to periodic light conductors. The book addresses a wide audience of mathematical physicists, focusing on the conceptual aspects rather than technical details and making algebraic methods accessible to analysts.
Mathematics is the language of physics, and over time physicists have developed their own dialect. The main purpose of this book is to bridge this language barrier, and introduce the readers to the beauty of mathematical physics. It shows how to combine the strengths of both approaches: physicists often arrive at interesting conjectures based on good intuition, which can serve as the starting point of interesting mathematics. Conversely, mathematicians can more easily see commonalities between very different fields (such as quantum mechanics and electromagnetism), and employ more advanced tools.Rather than focusing on a particular topic, the book showcases conceptual and mathematical commonalities across different physical theories. It translates physical problems to concrete mathematical questions, shows how to answer them and explains how to interpret the answers physically. For example, if two Hamiltonians are close, why are their dynamics similar?The book alternates between mathematics- and physics-centric chapters, and includes plenty of concrete examples from physics as well as 76 exercises with solutions. It exploits that readers from either end are familiar with some of the material already. The mathematics-centric chapters provide the necessary background to make physical concepts mathematically precise and establish basic facts. And each physics-centric chapter introduces physical theories in a way that is more friendly to mathematicians.As the book progresses, advanced material is sprinkled in to showcase how mathematics and physics augment one another. Some of these examples are based on recent publications and include material which has not been covered in other textbooks. This is to keep it interesting for the readers.
|
You may like...
|