![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects.
In today's developing world, industries are constantly required to improve and advance. New approaches are being implemented to determine optimum values and solutions for models such as artificial intelligence and machine learning. Research is a necessity for determining how these recent methods are being applied within the engineering field and what effective solutions they are providing. Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering is a collection of innovative research on the methods and implementation of machine learning and AI in multiple facets of engineering. While highlighting topics including control devices, geotechnology, and artificial neural networks, this book is ideally designed for engineers, academicians, researchers, practitioners, and students seeking current research on solving engineering problems using smart technology.
This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects.
In today's developing world, industries are constantly required to improve and advance. New approaches are being implemented to determine optimum values and solutions for models such as artificial intelligence and machine learning. Research is a necessity for determining how these recent methods are being applied within the engineering field and what effective solutions they are providing. Artificial Intelligence and Machine Learning Applications in Civil, Mechanical, and Industrial Engineering is a collection of innovative research on the methods and implementation of machine learning and AI in multiple facets of engineering. While highlighting topics including control devices, geotechnology, and artificial neural networks, this book is ideally designed for engineers, academicians, researchers, practitioners, and students seeking current research on solving engineering problems using smart technology.
|
![]() ![]() You may like...
Methods in Theoretical Quantum Optics
Stephen M. Barnett, Paul M. Radmore
Hardcover
R5,047
Discovery Miles 50 470
|