Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
The mathematical models considered in this book can help to understand the swelling of mitochondria. For the first time, it presents new mathematical models of mitochondrial swelling that take into account, in particular, spatial effects. The results presented here could make it possible to predict properties of the underlying biological mechanisms. Taking into account that mitochondria could move within a cell, lead to a PDE-PDE model. The book discusses the well-posedness and long-term dynamics of solutions, depending on boundary conditions reflecting the in vitro and in vivo cases. These analytical and numerical results have inspired colleagues from the Institute of Pharmacology and Toxicology of the Helmholtz Center Munich to design new experiments justifying the theoretical and numerical results that are obtained. The book is intended for graduates students and researchers with a solid mathematical background and an interest in cell biology.
The analysis and simulation of multifield problems have recently become one of the most actual and vivid areas of research. Although the individual subproblems of complex technical and physical phenomena often are understood separately, their interaction and coupling create not only new difficulties but also a complete new level and quality of interacting coupled field problems. Presented by leading experts this book includes recent results in these fields from the International Conference on Multifield Problems, April 8-10, 2002 at the University of Stuttgart, Germany.
This book is devoted to a new aspect of linear and nonlinear non-Fredholm operators and its applications. The domain of applications of theory developed here is potentially much wider than that presented in the book. Therefore, a goal of this book is to invite readers to make contributions to this fascinating area of mathematics. First, it is worth noting that linear Fredholm operators, one of the most important classes of linear maps in mathematics, were introduced around 1900 in the study of integral operators. These linear Fredholm operators between Banach spaces share, in some sense, many properties with linear maps between finite dimensional spaces. Since the end of the previous century there has been renewed interest in linear - nonlinear Fredholm maps from a topological degree point of view and its applications, following a period of "stagnation" in the mid-1960s. Now, linear and nonlinear Fredholm operator theory and the solvability of corresponding equations both from the analytical and topological points of view are quite well understood. Also noteworthy is, that as a by-product of our results, we have obtained an important tool for modelers working in mathematical biology and mathematical medicine, namely, the necessary conditions for preserving positive cones for systems of equations without Fredholm property containing local - nonlocal diffusion as well as terms for transport and nonlinear interactions.
This book deals with the modeling, analysis and simulation of problems arising in the life sciences, and especially in biological processes. The models and findings presented result from intensive discussions with microbiologists, doctors and medical staff, physicists, chemists and industrial engineers and are based on experimental data. They lead to a new class of degenerate density-dependent nonlinear reaction-diffusion convective equations that simultaneously comprise two kinds of degeneracy: porous-medium and fast-diffusion type degeneracy. To date, this class is still not clearly understood in the mathematical literature and thus especially interesting. The author both derives realistic life science models and their above-mentioned governing equations of the degenerate types and systematically studies these classes of equations. In each concrete case well-posedness, the dependence of solutions on boundary conditions reflecting some properties of the environment, and the large-time behavior of solutions are investigated and in some instances also studied numerically.
This book deals with a systematic study of a dynamical system approach to investigate the symmetrization and stabilization properties of nonnegative solutions of nonlinear elliptic problems in asymptotically symmetric unbounded domains. The usage of infinite dimensional dynamical systems methods for elliptic problems in unbounded domains as well as finite dimensional reduction of their dynamics requires new ideas and tools. To this end, both a trajectory dynamical systems approach and new Liouville type results for the solutions of some class of elliptic equations are used. The work also uses symmetry and monotonicity results for nonnegative solutions in order to characterize an asymptotic profile of solutions and compares a pure elliptic partial differential equations approach and a dynamical systems approach. The new results obtained will be particularly useful for mathematical biologists.
This book deals with the modeling, analysis and simulation of problems arising in the life sciences, and especially in biological processes. The models and findings presented result from intensive discussions with microbiologists, doctors and medical staff, physicists, chemists and industrial engineers and are based on experimental data. They lead to a new class of degenerate density-dependent nonlinear reaction-diffusion convective equations that simultaneously comprise two kinds of degeneracy: porous-medium and fast-diffusion type degeneracy. To date, this class is still not clearly understood in the mathematical literature and thus especially interesting. The author both derives realistic life science models and their above-mentioned governing equations of the degenerate types and systematically studies these classes of equations. In each concrete case well-posedness, the dependence of solutions on boundary conditions reflecting some properties of the environment, and the large-time behavior of solutions are investigated and in some instances also studied numerically.
The analysis and simulation of multifield problems have recently become one of the most actual and vivid areas of research. Although the individual subproblems of complex technical and physical phenomena often are understood separately, their interaction and coupling create not only new difficulties but also a complete new level and quality of interacting coupled field problems. Presented by leading experts this book includes recent results in these fields from the International Conference on Multifield Problems, April 8-10, 2002 at the University of Stuttgart, Germany.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|