0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Statistics for Health Data Science - An Organic Approach (Hardcover, 1st ed. 2020): Ruth Etzioni, Micha Mandel, Roman Gulati Statistics for Health Data Science - An Organic Approach (Hardcover, 1st ed. 2020)
Ruth Etzioni, Micha Mandel, Roman Gulati
R2,668 Discovery Miles 26 680 Ships in 18 - 22 working days

Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students' anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep ("organic") understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/

Statistics for Health Data Science - An Organic Approach (Paperback, 1st ed. 2020): Ruth Etzioni, Micha Mandel, Roman Gulati Statistics for Health Data Science - An Organic Approach (Paperback, 1st ed. 2020)
Ruth Etzioni, Micha Mandel, Roman Gulati
R1,730 Discovery Miles 17 300 Ships in 18 - 22 working days

Students and researchers in the health sciences are faced with greater opportunity and challenge than ever before. The opportunity stems from the explosion in publicly available data that simultaneously informs and inspires new avenues of investigation. The challenge is that the analytic tools required go far beyond the standard methods and models of basic statistics. This textbook aims to equip health care researchers with the most important elements of a modern health analytics toolkit, drawing from the fields of statistics, health econometrics, and data science. This textbook is designed to overcome students' anxiety about data and statistics and to help them to become confident users of appropriate analytic methods for health care research studies. Methods are presented organically, with new material building naturally on what has come before. Each technique is motivated by a topical research question, explained in non-technical terms, and accompanied by engaging explanations and examples. In this way, the authors cultivate a deep ("organic") understanding of a range of analytic techniques, their assumptions and data requirements, and their advantages and limitations. They illustrate all lessons via analyses of real data from a variety of publicly available databases, addressing relevant research questions and comparing findings to those of published studies. Ultimately, this textbook is designed to cultivate health services researchers that are thoughtful and well informed about health data science, rather than data analysts. This textbook differs from the competition in its unique blend of methods and its determination to ensure that readers gain an understanding of how, when, and why to apply them. It provides the public health researcher with a way to think analytically about scientific questions, and it offers well-founded guidance for pairing data with methods for valid analysis. Readers should feel emboldened to tackle analysis of real public datasets using traditional statistical models, health econometrics methods, and even predictive algorithms. Accompanying code and data sets are provided in an author site: https://roman-gulati.github.io/statistics-for-health-data-science/

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Kanneh-Masons - Carnival of the…
Kanneh-Masons CD R151 R120 Discovery Miles 1 200
Krok en Dil Vlak 3 Boek 5 - Superdil
Jaco Jacobs Paperback R50 R46 Discovery Miles 460
Tchaikovsky - Ballet Suites - The…
CD R156 R145 Discovery Miles 1 450
Surviving Your Child's Adolescence - A…
Buddy Mendez Paperback R269 R251 Discovery Miles 2 510
Emotionally Healthy Discipleship…
Peter Scazzero Hardcover R603 Discovery Miles 6 030
Beehive Book 6: Thrills and spills
Book R110 Discovery Miles 1 100
Contemporary Japanese Workbook Volume 2…
Eriko Sato Paperback R381 Discovery Miles 3 810
Babysitting Calvin
John H. Newmeir Paperback R345 Discovery Miles 3 450
The Tenant
Freida McFadden Paperback R290 R249 Discovery Miles 2 490
Lore Of Nutrition - Challenging…
Tim Noakes, Marika Sboros Paperback  (4)
R350 R323 Discovery Miles 3 230

 

Partners