Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book is summarizing the results of the workshop "Uniform Distribution and Quasi-Monte Carlo Methods" of the RICAM Special Semester on "Applications of Algebra and Number Theory" in October 2013. The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology. The goal of this book is to give an overview of recent developments in uniform distribution theory, quasi-Monte Carlo methods, and their applications, presented by leading experts in these vivid fields of research.
Trees are a fundamental object in graph theory and combinatorics as well as a basic object for data structures and algorithms in computer science. During thelastyearsresearchrelatedto(random)treeshasbeenconstantlyincreasing and several asymptotic and probabilistic techniques have been developed in order to describe characteristics of interest of large trees in di?erent settings. Thepurposeofthisbookistoprovideathoroughintroductionintovarious aspects of trees in randomsettings anda systematic treatment ofthe involved mathematicaltechniques. It shouldserveasa referencebookaswellasa basis for future research. One major conceptual aspect is to connect combinatorial and probabilistic methods that range from counting techniques (generating functions, bijections) over asymptotic methods (singularity analysis, saddle point techniques) to various sophisticated techniques in asymptotic probab- ity (convergence of stochastic processes, martingales). However, the reading of the book requires just basic knowledge in combinatorics, complex analysis, functional analysis and probability theory of master degree level. It is also part of concept of the book to provide full proofs of the major results even if they are technically involved and lengthy.
Mathematics and Computer Science III contains invited and contributed papers on combinatorics, random graphs and networks, algorithms analysis and trees, branching processes, constituting the Proceedings of the Third International Colloquium on Mathematics and Computer Science, held in Vienna in September 2004. It addresses a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers.
Through information theory, problems of communication and compression can be precisely modeled, formulated, and analyzed, and this information can be transformed by means of algorithms. Also, learning can be viewed as compression with side information. Aimed at students and researchers, this book addresses data compression and redundancy within existing methods and central topics in theoretical data compression, demonstrating how to use tools from analytic combinatorics to discover and analyze precise behavior of source codes. It shows that to present better learnable or extractable information in its shortest description, one must understand what the information is, and then algorithmically extract it in its most compact form via an efficient compression algorithm. Part I covers fixed-to-variable codes such as Shannon and Huffman codes, variable-to-fixed codes such as Tunstall and Khodak codes, and variable-to-variable Khodak codes for known sources. Part II discusses universal source coding for memoryless, Markov, and renewal sources.
Mathematics and Computer Science III contains invited and contributed papers on combinatorics, random graphs and networks, algorithms analysis and trees, branching processes, constituting the Proceedings of the Third International Colloquium on Mathematics and Computer Science, held in Vienna in September 2004. It addresses a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers.
Trees are a fundamental object in graph theory and combinatorics as well as a basic object for data structures and algorithms in computer science. During thelastyearsresearchrelatedto(random)treeshasbeenconstantlyincreasing and several asymptotic and probabilistic techniques have been developed in order to describe characteristics of interest of large trees in di?erent settings. Thepurposeofthisbookistoprovideathoroughintroductionintovarious aspects of trees in randomsettings anda systematic treatment ofthe involved mathematicaltechniques. It shouldserveasa referencebookaswellasa basis for future research. One major conceptual aspect is to connect combinatorial and probabilistic methods that range from counting techniques (generating functions, bijections) over asymptotic methods (singularity analysis, saddle point techniques) to various sophisticated techniques in asymptotic probab- ity (convergence of stochastic processes, martingales). However, the reading of the book requires just basic knowledge in combinatorics, complex analysis, functional analysis and probability theory of master degree level. It is also part of concept of the book to provide full proofs of the major results even if they are technically involved and lengthy.
The main purpose of this book is to give an overview of the developments during the last 20 years in the theory of uniformly distributed sequences. The authors focus on various aspects such as special sequences, metric theory, geometric concepts of discrepancy, irregularities of distribution, continuous uniform distribution and uniform distribution in discrete spaces. Specific applications are presented in detail: numerical integration, spherical designs, random number generation and mathematical finance. Furthermore over 1000 references are collected and discussed. While written in the style of a research monograph, the book is readable with basic knowledge in analysis, number theory and measure theory.
The term analytic information theory has been coined to describe problems of information theory studied by analytic tools. The approach of applying tools from analysis of algorithms to problems of source coding and, in general, to information theory lies at the crossroad of computer science and information theory. Combining the tools from both areas often provides powerful results, such as computer scientist Abraham Lempel and information theorist Jacob Ziv working together in the late 1970s to develop compression algorithms that are now widely referred to as Lempel-Ziv algorithms and are the basis of the ZIP compression still used extensively in computing today. This monograph surveys the use of these techniques for the rigorous analysis of code redundancy for known sources in lossless data compression. A separate chapter is devoted to precise analyses of each of three types of lossless data compression schemes, namely fixed-to-variable length codes, variable-to-fixed length codes, and variable-to-variable length codes. Each one of these schemes is described in detail, building upon work done in the latter part of the 20th century to present new and powerful techniques. For the first time, this survey presents redundancy for universal variable-to-fixed and variable-to-variable length codes in a comprehensive and coherent manner. The monograph will be of interest to computer scientists and information theorists working on modern coding techniques. Written by two leading experts, it provides the reader with a unique, succinct starting point for their own research into the area.
|
You may like...
|