Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 27 matches in All Departments
Meshfree methods, particle methods, and generalized finite element methods have witnessed substantial development since the mid 1990s. The growing interest in these methods is due in part to the fact that they are extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods offer a number of advantageous features which are especially attractive when dealing with multiscale phenomena: a priori knowledge about particular local behavior of the solution can easily be introduced in the meshfree approximation space, and coarse-scale approximations can be seamlessly refined with fine-scale information. This volume collects selected papers presented at the Seventh International Workshop on Meshfree Methods, held in Bonn, Germany in September 2013. They address various aspects of this highly dynamic research field and cover topics from applied mathematics, physics and engineering.
The book integrates theoretical analysis, numerical simulation and modeling approaches for the treatment of singular phenomena. The projects covered focus on actual applied problems, and develop qualitatively new and mathematically challenging methods for various problems from the natural sciences. Ranging from stochastic and geometric analysis over nonlinear analysis and modelling to numerical analysis and scientific computation, the book is divided into the three sections: A) Scaling limits of diffusion processes and singular spaces, B) Multiple scales in mathematical models of materials science and biology and C) Numerics for multiscale models and singular phenomena. Each section addresses the key aspects of multiple scales and model hierarchies, singularities and degeneracies, and scaling laws and self-similarity.
The contributions gathered here provide an overview of current research projects and selected software products of the Fraunhofer Institute for Algorithms and Scientific Computing SCAI. They show the wide range of challenges that scientific computing currently faces, the solutions it offers, and its important role in developing applications for industry. Given the exciting field of applied collaborative research and development it discusses, the book will appeal to scientists, practitioners, and students alike. The Fraunhofer Institute for Algorithms and Scientific Computing SCAI combines excellent research and application-oriented development to provide added value for our partners. SCAI develops numerical techniques, parallel algorithms and specialized software tools to support and optimize industrial simulations. Moreover, it implements custom software solutions for production and logistics, and offers calculations on high-performance computers. Its services and products are based on state-of-the-art methods from applied mathematics and information technology.
There have been substantial developments in meshfree methods, particle methods, and generalized finite element methods since the mid 1990s. The growing interest in these methods is in part due to the fact that they offer extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods have a number of advantageous features that are especially attractive when dealing with multiscale phenomena: A-priori knowledge about the solution's particular local behavior can easily be introduced into the meshfree approximation space, and coarse scale approximations can be seamlessly refined by adding fine scale information. However, the implementation of meshfree methods and their parallelization also requires special attention, for instance with respect to numerical integration.
Meshfree methods are a modern alternative to classical mesh-based discretization techniques such as finite differences or finite element methods. Especially in a time-dependent setting or in the treatment of problems with strongly singular solutions their independence of a mesh makes these methods highly attractive. This volume collects selected papers presented at the Sixth International Workshop on Meshfree Methods held in Bonn, Germany in October 2011. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering.
Particle models play an important role in many applications in physics, chemistry and biology. They can be studied on the computer with the help of molecular dynamics simulations. This book presents in detail both the necessary numerical methods and techniques (linked-cell method, SPME-method, tree codes, multipole technique) and the theoretical background and foundations. It illustrates the aspects modelling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. Furthermore, detailed explanations are given to the different steps of numerical simulation, and code examples are provided. With the description of the algorithms and the presentation of the results of various simulations from the areas material science, nanotechnology, biochemistry and astrophysics, the reader of this book will be able to write his own programs for molecular dynamics step by step and to run successful experiments.
In April 2007, the Deutsche Forschungsgemeinschaft (DFG) approved the Priority Program 1324 "Mathematical Methods for Extracting Quantifiable Information from Complex Systems." This volume presents a comprehensive overview of the most important results obtained over the course of the program. Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance. Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges. Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as well as the development of new and efficient numerical algorithms were among the main goals of this Priority Program. The treatment of high-dimensional systems is clearly one of the most challenging tasks in applied mathematics today. Since the problem of high-dimensionality appears in many fields of application, the above-mentioned synergy and cross-fertilization effects were expected to make a great impact. To be truly successful, the following issues had to be kept in mind: theoretical research and practical applications had to be developed hand in hand; moreover, it has proven necessary to combine different fields of mathematics, such as numerical analysis and computational stochastics. To keep the whole program sufficiently focused, we concentrated on specific but related fields of application that share common characteristics and as such, they allowed us to use closely related approaches.
This volume collects selected papers presented at the Ninth International Workshop on Meshfree Methods held in Bonn, Germany in September 2017. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering. The numerical treatment of partial differential equations with meshfree discretization techniques has been a very active research area in recent years. While the fundamental theory of meshfree methods has been developed and considerable advances of the various methods have been made, many challenges in the mathematical analysis and practical implementation of meshfree methods remain. This symposium aims to promote collaboration among engineers, mathematicians, and computer scientists and industrial researchers to address the development, mathematical analysis, and application of meshfree and particle methods especially to multiscale phenomena. It continues the 2-year-cycled Workshops on Meshfree Methods for Partial Differential Equations.
The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is an extremely active research field, both in the mathematics and engineering communities. Meshfree methods are becoming increasingly mainstream in various applications. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the papers from the proceedings of the Fifth International Workshop on Meshfree Methods, held in Bonn in August 2009. The articles address the different meshfree methods and their use in applied mathematics, physics and engineering. The volume is intended to foster this highly active and exciting area of interdisciplinary research and to present recent advances and findings in this field.
Polymer and cell dynamics play an important role in processes like tumor growth, metastasis, embryogenesis, immune reactions and regeneration. This volume based on an international workshop on numerical simulations of polymer and cell dynamics in Bad Honnef (Germany) in 2000 provides an overview of the relevant mathematical and numerical methods, their applications and limits. The contributions are from the fields of applied and numerical mathematics, scientific computing, theoretical physics, molecular biophysics, cell and molecular biology as well as chemical and biomedical engineering. The volume will be of interest to scientists and advanced undergraduates in the fields of biotechnology, biomedicine, applied mathematics, biomathematics, biophysics and bioinformatics."
In the recent decade, there has been a growing interest in the numerical treatment of high-dimensional problems. It is well known that classical numerical discretization schemes fail in more than three or four dimensions due to the curse of dimensionality. The technique of sparse grids helps overcome this problem to some extent under suitable regularity assumptions. This discretization approach is obtained from a multi-scale basis by a tensor product construction and subsequent truncation of the resulting multiresolution series expansion. This volume of LNCSE is a collection of the papers from the proceedings of the workshop on sparse grids and its applications held in Bonn in May 2011. The selected articles present recent advances in the mathematical understanding and analysis of sparse grid discretization. Aspects arising from applications are given particular attention.
There have been substantial developments in meshfree methods, particle methods, and generalized finite element methods since the mid 1990s. The growing interest in these methods is in part due to the fact that they offer extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods have a number of advantageous features that are especially attractive when dealing with multiscale phenomena: A-priori knowledge about the solution's particular local behavior can easily be introduced into the meshfree approximation space, and coarse scale approximations can be seamlessly refined by adding fine scale information. However, the implementation of meshfree methods and their parallelization also requires special attention, for instance with respect to numerical integration.
The book integrates theoretical analysis, numerical simulation and modeling approaches for the treatment of singular phenomena. The projects covered focus on actual applied problems, and develop qualitatively new and mathematically challenging methods for various problems from the natural sciences. Ranging from stochastic and geometric analysis over nonlinear analysis and modelling to numerical analysis and scientific computation, the book is divided into the three sections: A) Scaling limits of diffusion processes and singular spaces, B) Multiple scales in mathematical models of materials science and biology and C) Numerics for multiscale models and singular phenomena. Each section addresses the key aspects of multiple scales and model hierarchies, singularities and degeneracies, and scaling laws and self-similarity.
Meshfree methods, particle methods, and generalized finite element methods have witnessed substantial development since the mid 1990s. The growing interest in these methods is due in part to the fact that they are extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods offer a number of advantageous features which are especially attractive when dealing with multiscale phenomena: a priori knowledge about particular local behavior of the solution can easily be introduced in the meshfree approximation space, and coarse-scale approximations can be seamlessly refined with fine-scale information. This volume collects selected papers presented at the Seventh International Workshop on Meshfree Methods, held in Bonn, Germany in September 2013. They address various aspects of this highly dynamic research field and cover topics from applied mathematics, physics and engineering.
In April 2007, the Deutsche Forschungsgemeinschaft (DFG) approved the Priority Program 1324 "Mathematical Methods for Extracting Quantifiable Information from Complex Systems." This volume presents a comprehensive overview of the most important results obtained over the course of the program. Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance. Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges. Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as well as the development of new and efficient numerical algorithms were among the main goals of this Priority Program. The treatment of high-dimensional systems is clearly one of the most challenging tasks in applied mathematics today. Since the problem of high-dimensionality appears in many fields of application, the above-mentioned synergy and cross-fertilization effects were expected to make a great impact. To be truly successful, the following issues had to be kept in mind: theoretical research and practical applications had to be developed hand in hand; moreover, it has proven necessary to combine different fields of mathematics, such as numerical analysis and computational stochastics. To keep the whole program sufficiently focused, we concentrated on specific but related fields of application that share common characteristics and as such, they allowed us to use closely related approaches.
Meshfree methods are a modern alternative to classical mesh-based discretization techniques such as finite differences or finite element methods. Especially in a time-dependent setting or in the treatment of problems with strongly singular solutions their independence of a mesh makes these methods highly attractive. This volume collects selected papers presented at the Sixth International Workshop on Meshfree Methods held in Bonn, Germany in October 2011. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering.
The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is an extremely active research field, both in the mathematics and engineering communities. Meshfree methods are becoming increasingly mainstream in various applications. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the papers from the proceedings of the Fifth International Workshop on Meshfree Methods, held in Bonn in August 2009. The articles address the different meshfree methods and their use in applied mathematics, physics and engineering. The volume is intended to foster this highly active and exciting area of interdisciplinary research and to present recent advances and findings in this field.
Polymer and cell dynamics play an important role in processes like tumor growth, metastasis, embryogenesis, immune reactions and regeneration. This volume based on an international workshop on numerical simulations of polymer and cell dynamics in Bad Honnef (Germany) in 2000 provides an overview of the relevant mathematical and numerical methods, their applications and limits. The contributions are from the fields of applied and numerical mathematics, scientific computing, theoretical physics, molecular biophysics, cell and molecular biology as well as chemical and biomedical engineering. The volume will be of interest to scientists and advanced undergraduates in the fields of biotechnology, biomedicine, applied mathematics, biomathematics, biophysics and bioinformatics."
In the recent decade, there has been a growing interest in the numerical treatment of high-dimensional problems. It is well known that classical numerical discretization schemes fail in more than three or four dimensions due to the curse of dimensionality. The technique of sparse grids helps overcome this problem to some extent under suitable regularity assumptions. This discretization approach is obtained from a multi-scale basis by a tensor product construction and subsequent truncation of the resulting multiresolution series expansion. This volume of LNCSE is a collection of the papers from the proceedings of the workshop on sparse grids and its applications held in Bonn in May 2011. The selected articles present recent advances in the mathematical understanding and analysis of sparse grid discretization. Aspects arising from applications are given particular attention.
This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.
The Fourth International Workshop on Meshfree Methods for Partial D- ferential Equations was held from September 17 to September 20, 2007 in Bonn, Germany. One of the major goals of this workshop series is to bring together European, American and Asian researchers working in this exciting ?eld of interdisciplinary research on a regular basis. To this end Ivo Babu? ska, Ted Belytschko, Michael Griebel, Antonio Huerta, Wing Kam Liu, and Harry Yserentant invited scientist from twelve countries to Bonn to strengthen the mathematical understanding and analysis of meshfree discretizations but also to promote the exchange of ideas on their implementation and application. The workshop was again hosted by the Institut fur .. Numerische Simu- tionattheRheinischeFriedrich-Wilhelms-Universit. atBonnwiththe?nancial support of the Sonderforschungsbereich 611 Singular Phenomena and Scaling in Mathematical Models. This volume of LNCSE now comprises selected contributions of attendees of the workshop. Their content ranges from applied mathematics to physics and engineering. This is also an indication that meshfree methods for the numerical solution of partial di?erential equations are becoming more and more mainstream in many areas of applications due to their ? exiblity and wide applicability.
Over the past years meshfree methods for the solution of partial di?erential equations have signi?cantly matured and are used in various ?elds of appli- tions. One of the reasons for this development is the fact that meshfree d- cretizationsandparticlemodels areoftenbetter suitedto copewithgeometric changes of the domain of interest than mesh-based discretization techniques such as ?nite di?erences, ?nite elements or ?nite volumes. Furthermore, the computational costs associated with mesh generation are eliminated in me- free approaches, since they are based only on a set of independent points. From the modelling point of view, meshfree methods gained much interest in recent years since they may provide an e?cient and reliable approach to the coupling of contiuum models to particle models. In light of these developments the Sonderforschungsbereich 611 and the Gesellschaft fur Mathematik und Mechanik sponsored the second interna- .. tionalworkshoponMeshfreeMethodsforPartialDi?erentialEquations.Itwas hostedby the Institut fur .. Numerische Simulationatthe Rheinische Friedrich- Wilhelms Universit. at Bonn from September 15 to September 17, 2003. The organizers Ivo Babu? ska, Ted Belytschko, Michael Griebel, Wing Kam Liu, Helmut Neunzert, and Harry Yserentant invited scientist from twelve co- tries to Bonn with the aim to bring together European, American and Asian researchers working in this exciting area of interdisciplinary research. The objective of the workshop was not only to strengthen the mathematical - derstanding and analysis of meshfree discretizations but also to promote the exchange of ideas on their implementation and application.
Meshfree methods for the solution of partial differential equations gained much attention in recent years, not only in the engineering but also in the mathematics community. One of the reasons for this development is the fact that meshfree discretizations and particle models are often better suited to cope with geometric changes of the domain of interest, e.g. free surfaces and large deformations, than classical discretization techniques such as finite differences, finite elements or finite volumes. Another obvious advantage of meshfree discretizations is their independence of a mesh so that the costs of mesh generation are eliminated. Also, the treatment of time-dependent PDEs from a Lagrangian point of view and the coupling of particle models and continuous models gained enormous interest in recent years from a theoretical as well as from a practial point of view. This volume consists of articles which address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM etc.) and their application in applied mathematics, physics and engineering.
This volume collects selected papers presented at the Ninth International Workshop on Meshfree Methods held in Bonn, Germany in September 2017. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering. The numerical treatment of partial differential equations with meshfree discretization techniques has been a very active research area in recent years. While the fundamental theory of meshfree methods has been developed and considerable advances of the various methods have been made, many challenges in the mathematical analysis and practical implementation of meshfree methods remain. This symposium aims to promote collaboration among engineers, mathematicians, and computer scientists and industrial researchers to address the development, mathematical analysis, and application of meshfree and particle methods especially to multiscale phenomena. It continues the 2-year-cycled Workshops on Meshfree Methods for Partial Differential Equations.
Meshfree methods for the numerical solution of partial differential equations are becoming more and more mainstream in many areas of applications. This volume represents the state-of-the-art in meshfree methods. It consists of articles which address the different meshfree techniques, their mathematical properties and their application in applied mathematics, physics and engineering. |
You may like...
|