Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
Automatic Graph Drawing is concerned with the layout of relational structures as they occur in Computer Science (Data Base Design, Data Mining, Web Mining), Bioinformatics (Metabolic Networks), Businessinformatics (Organization Diagrams, Event Driven Process Chains), or the Social Sciences (Social Networks). In mathematical terms, such relational structures are modeled as graphs or more general objects such as hypergraphs, clustered graphs, or compound graphs. A variety of layout algorithms that are based on graph theoretical foundations have been developed in the last two decades and implemented in software systems. After an introduction to the subject area and a concise treatment of the technical foundations for the subsequent chapters, this book features 14 chapters on state-of-the-art graph drawing software systems, ranging from general "tool boxes'' to customized software for various applications. These chapters are written by leading experts, they follow a uniform scheme and can be read independently from each other.
Martin Grotschel is one of the most influential mathematicians of our time. He has received numerous honors and holds a number of key positions in the international mathematical community. He celebrated his 65th birthday on September 10, 2013. Martin Grotschel s doctoral descendant tree 1983 2012, i.e., the first 30 years, features 39 children, 74 grandchildren, 24 great-grandchildren and 2 great-great-grandchildren, a total of 139 doctoral descendants. This book starts with a personal tribute to Martin Grotschel by the editors (Part I), a contribution by his very special predecessor Manfred Padberg on Facets and Rank of Integer Polyhedra (Part II), and the doctoral descendant tree 1983 2012 (Part III). The core of this book (Part IV) contains 16 contributions, each of which is coauthored by at least one doctoral descendant. The sequence of the articles starts with contributions to the theory of mathematical optimization, including polyhedral combinatorics, extended formulations, mixed-integer convex optimization, super classes of perfect graphs, efficient algorithms for subtree-telecenters, junctions in acyclic graphs and preemptive restricted strip covering, as well as efficient approximation of non-preemptive restricted strip covering. Combinations of new theoretical insights with algorithms and experiments deal with network design problems, combinatorial optimization problems with submodular objective functions and more general mixed-integer nonlinear optimization problems. Applications include VLSI layout design, systems biology, wireless network design, mean-risk optimization and gas network optimization. Computational studies include a semidefinite branch and cut approach for the max k-cut problem, mixed-integer nonlinear optimal control, and mixed-integer linear optimization for scheduling and routing of fly-in safari planes. The two closing articles are devoted to computational advances in general mixed integer linear optimization, the first by scientists working in industry, the second by scientists working in academia. These articles reflect the scientific facets of Martin Grotschel who has set standards in theory, computation and applications.
Martin Groetschel is one of the most influential mathematicians of our time. He has received numerous honors and holds a number of key positions in the international mathematical community. He celebrated his 65th birthday on September 10, 2013. Martin Groetschel's doctoral descendant tree 1983-2012, i.e., the first 30 years, features 39 children, 74 grandchildren, 24 great-grandchildren and 2 great-great-grandchildren, a total of 139 doctoral descendants. This book starts with a personal tribute to Martin Groetschel by the editors (Part I), a contribution by his very special "predecessor" Manfred Padberg on "Facets and Rank of Integer Polyhedra" (Part II), and the doctoral descendant tree 1983-2012 (Part III). The core of this book (Part IV) contains 16 contributions, each of which is coauthored by at least one doctoral descendant. The sequence of the articles starts with contributions to the theory of mathematical optimization, including polyhedral combinatorics, extended formulations, mixed-integer convex optimization, super classes of perfect graphs, efficient algorithms for subtree-telecenters, junctions in acyclic graphs and preemptive restricted strip covering, as well as efficient approximation of non-preemptive restricted strip covering. Combinations of new theoretical insights with algorithms and experiments deal with network design problems, combinatorial optimization problems with submodular objective functions and more general mixed-integer nonlinear optimization problems. Applications include VLSI layout design, systems biology, wireless network design, mean-risk optimization and gas network optimization. Computational studies include a semidefinite branch and cut approach for the max k-cut problem, mixed-integer nonlinear optimal control, and mixed-integer linear optimization for scheduling and routing of fly-in safari planes. The two closing articles are devoted to computational advances in general mixed integer linear optimization, the first by scientists working in industry, the second by scientists working in academia. These articles reflect the "scientific facets" of Martin Groetschel who has set standards in theory, computation and applications.
Automatic Graph Drawing is concerned with the layout of relational structures as they occur in Computer Science (Data Base Design, Data Mining, Web Mining), Bioinformatics (Metabolic Networks), Businessinformatics (Organization Diagrams, Event Driven Process Chains), or the Social Sciences (Social Networks). In mathematical terms, such relational structures are modeled as graphs or more general objects such as hypergraphs, clustered graphs, or compound graphs. A variety of layout algorithms that are based on graph theoretical foundations have been developed in the last two decades and implemented in software systems. After an introduction to the subject area and a concise treatment of the technical foundations for the subsequent chapters, this book features 14 chapters on state-of-the-art graph drawing software systems, ranging from general "tool boxes'' to customized software for various applications. These chapters are written by leading experts, they follow a uniform scheme and can be read independently from each other.
Since its start in 1990, the IPCO conference series (held under the auspices of theMathematicalProgrammingSociety)hasbecomeanimportantforumforthe presentation of recent results in Integer Programming and Combinatorial Op- mization. This volume compiles the papers presented at IPCO XI, the eleventh conference in this series, held June 8-10, 2005, at the Technische Universit] at Berlin. The high interest in this conference series is evident in the large number of submissions. For IPCO XI, 119 extended abstracts of up to 10 pages were submitted. During its meeting on January 29-30, 2005, the Program Committee carefully selected 34 contributions for presentation in non-parallel sessions at the conference. The ?nal choices were not easy at all, since, due to the limited number of time slots, many very good papers could not be accepted. During the selection process the contributions were refereed according to the standards of refereed conferences. As a result of this procedure, you have in your hands a volume that contains papers describing high-quality research e?orts. The page limit for contributions to this proceedings volume was set to 15. You may ?nd full versions of the papers in scienti?c journals in the near future. We thank all the authors who submitted papers. Furthermore, the Program Committee is indebted to the many reviewers who, with their speci?c expertise, helped a lot in making the decisions."
This book is dedicated to Jack Edmonds in appreciation of his ground breaking work that laid the foundations for a broad variety of subsequent results achieved in combinatorial optimization. The main part consists of 13 revised full papers on current topics in combinatorial optimization, presented at Aussois 2001, the Fifth Aussois Workshop on Combinatorial Optimization, March 5-9, 2001, and dedicated to Jack Edmonds. Additional highlights in this book are an account of an Aussois 2001 special session dedicated to Jack Edmonds including a speech given by William R. Pulleyblank as well as newly typeset versions of three up-to-now hardly accessible classical papers: - Submodular Functions, Matroids, and Certain Polyhedra by Jack Edmonds - Matching: A Well-Solved Class of Integer Linear Programs by Jack Edmonds and Ellis L. Johnson - Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems by Jack Edmonds and Richard M. Karp.
This book constitutes the thoroughly refereed post-proceedings of the 9th International Symposium on Graph Drawing, GD 2001, held in Vienna, Austria, in September 2001.The 32 revised full papers presented were carefully reviewed and selected from 66 paper submissions. Also included are a corrected version of a paper from the predecessor volume, short reports on the software systems exhibition, two papers of the special session on graph exchange formats, and a report on the annual graph drawing contests. The papers are organized in topical sections on hierarchical drawing, planarity, crossing theory, compaction, planar graphs, symmetries, interactive drawing, representations, aesthetics, 2D- and 3D-embeddings, data visualization, floor planning, and planar drawing.
This tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality.
This proceedings volume contains extended abstracts of talks presented at the 18th Symposium on Operations Research held at the University of Cologne, September 1-3, 1993. The Symposia on Operations Research are the annual meetings of the Gesellschaft fiir Mathematik, Okonometrie und Operations Research (GMOOR), a scientific society providing a link between research and applications in the areas of applied mathematics, economics and operations research. The broad range of interests and scientific activities covered by GMOOR and its members was demonstrated by about 250 talks presented at the 18th Symposium. As in l'ecent years, emphasis was placed on optimization and stochastics, this year with a special focus on combinatorial optimization and discrete mathematics. We appreciate that with sections on parallel and distributed computing and on scientific computing also new fields could be integrated into the scope of the GMOOR. This book contains extended abstracts of most of the papers presented at the con ference. Long versions and full papers of the talks are expected to appear elsewhere in refereed periodicals. The contributions were divided into sixteen sections: (1) Theory of Optimization, (2) Computational Methods of Optimization, (3) Combinatorial Optimization and Dis crete Mathematics, (4) Scientific Computing, (5) Decision Theory, (6) Mathematical Economics and Game Theory, (7) Banking, Finance and Insurance, (8) Econometrics, (9) Macroeconomics and Economic Theory, (10) Stochastics, (11) Production and Lo gistics, (12) System and Control Theory, (13) Routing and Scheduling, (14) Knowledge Based Systems, (15) Information Systems and (16) Parallel and Distributed Compu ting."
Mathematiker haben in den letzten Jahren grundlegende Beitrage zu Fragestellungen in der Industrie, in Transport und Kommunikation, Versicherungen und Banken, in Medizin und Biologie geleistet. Dieses Buch ist ein Versuch, solche Beitrage in Form von Fallstudien einer grosseren Offentlichkeit zuganglich zu machen. Die von Experten in den jeweiligen Anwendungsgebieten geschriebenen Artikel belegen, wie vielfaltig und wie aufregend Mathematik im Spannungsfeld zwischen Theorie und Anwendung sein kann. Die behandelte Problematik wird in der jeweiligen "Anwendersprache" eingefuhrt, mathematisch modelliert, dann werden Losungsverfahren skizziert und schliesslich praktische Ergebnisse diskutiert. Dieser Band zeugt von einer Offnung der Mathematik und von einem "Trend zur grosseren Praxisnahe.""
|
You may like...
|