![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This volume collects recent advances in nonlinear delay systems, with an emphasis on constructive generalized Lyapunov and predictive approaches that certify stability properties. The book is written by experts in the field and includes two chapters by Miroslav Krstic, to whom this volume is dedicated. This volume is suitable for all researchers in mathematics and engineering who deal with nonlinear delay control problems and students who would like to understand the current state of the art in the control of nonlinear delay systems.
This volume collects recent advances in nonlinear delay systems, with an emphasis on constructive generalized Lyapunov and predictive approaches that certify stability properties. The book is written by experts in the field and includes two chapters by Miroslav Krstic, to whom this volume is dedicated. This volume is suitable for all researchers in mathematics and engineering who deal with nonlinear delay control problems and students who would like to understand the current state of the art in the control of nonlinear delay systems.
Converse Lyapunov function theory guarantees the existence of strict Lyapunov functions in many situations, but the functions it provides are often abstract and nonexplicit, and therefore may not lend themselves to engineering applications. Often, even when a system is known to be stable, one still needs explicit Lyapunov functions; however, once an appropriate strict Lyapunov function has been constructed, many robustness and stabilization problems can be solved through standard feedback designs or robustness arguments. Non-strict Lyapunov functions are often readily constructed. This book contains a broad repertoire of Lyapunov constructions for nonlinear systems, focusing on methods for transforming non-strict Lyapunov functions into strict ones. Their explicitness and simplicity make them suitable for feedback design, and for quantifying the effects of uncertainty. Readers will benefit from the authors' mathematical rigor and unifying, design-oriented approach, as well as the numerous worked examples.
This edited book contains selected papers presented at the Louisiana Conference on Mathematical Control Theory (MCT'03), which brought together over 35 prominent world experts in mathematical control theory and its applications. The book forms a well-integrated exploration of those areas of mathematical control theory in which nonsmooth analysis is having a major impact. These include necessary and sufficient conditions in optimal control, Lyapunov characterizations of stability, input-to-state stability, the construction of feedback mechanisms, viscosity solutions of Hamilton-Jacobi equations, invariance, approximation theory, impulsive systems, computational issues for nonlinear systems, and other topics of interest to mathematicians and control engineers. The book has a strong interdisciplinary component and was designed to facilitate the interaction between leading mathematical experts in nonsmooth analysis and engineers who are increasingly using nonsmooth analytic tools.
|
![]() ![]() You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
![]()
|