Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
Inequalities arise as an essential component in various mathematical areas. Besides forming a highly important collection of tools, e.g. for proving analytic or stochastic theorems or for deriving error estimates in numerical mathematics, they constitute a challenging research field of their own. Inequalities also appear directly in mathematical models for applications in science, engineering, and economics. This edited volume covers divers aspects of this fascinating field. It addresses classical inequalities related to means or to convexity as well as inequalities arising in the field of ordinary and partial differential equations, like Sobolev or Hardy-type inequalities, and inequalities occurring in geometrical contexts. Within the last five decades, the late Wolfgang Walter has made great contributions to the field of inequalities. His book on differential and integral inequalities was a real breakthrough in the 1970 s and has generated a vast variety of further research in this field. He also organized six of the seven General Inequalities Conferences held at Oberwolfach between 1976 and 1995, and co-edited their proceedings. He participated as an honorary member of the Scientific Committee in the General Inequalities 8 conference in Hungary. As a recognition of his great achievements, this volume is dedicated to Wolfgang Walter s memory. The General Inequalities meetings found their continuation in the Conferences on Inequalities and Applications which, so far, have been held twice in Hungary. This volume contains selected contributions of participants of the second conference which took place in Hajduszoboszlo in September 2010, as well as additional articles written upon invitation. These contributions reflect many theoretical and practical aspects in the field of inequalities, and will be useful for researchers and lecturers, as well as for students who want to familiarize themselves with the area.
In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a "theoretical" proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form - u=f(x,u, u) with Dirichlet boundary conditions. Here, by "verified computation" is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors' methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.
Inequalities arise as an essential component in various mathematical areas. Besides forming a highly important collection of tools, e.g. for proving analytic or stochastic theorems or for deriving error estimates in numerical mathematics, they constitute a challenging research field of their own. Inequalities also appear directly in mathematical models for applications in science, engineering, and economics. This edited volume covers divers aspects of this fascinating field. It addresses classical inequalities related to means or to convexity as well as inequalities arising in the field of ordinary and partial differential equations, like Sobolev or Hardy-type inequalities, and inequalities occurring in geometrical contexts. Within the last five decades, the late Wolfgang Walter has made great contributions to the field of inequalities. His book on differential and integral inequalities was a real breakthrough in the 1970's and has generated a vast variety of further research in this field. He also organized six of the seven "General Inequalities" Conferences held at Oberwolfach between 1976 and 1995, and co-edited their proceedings. He participated as an honorary member of the Scientific Committee in the "General Inequalities 8" conference in Hungary. As a recognition of his great achievements, this volume is dedicated to Wolfgang Walter's memory. The "General Inequalities" meetings found their continuation in the "Conferences on Inequalities and Applications" which, so far, have been held twice in Hungary. This volume contains selected contributions of participants of the second conference which took place in Hajduszoboszlo in September 2010, as well as additional articles written upon invitation. These contributions reflect many theoretical and practical aspects in the field of inequalities, and will be useful for researchers and lecturers, as well as for students who want to familiarize themselves with the area.
In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a "theoretical" proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form - u=f(x,u, u) with Dirichlet boundary conditions. Here, by "verified computation" is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors' methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.
This book concentrates on the mathematics of photonic crystals, which form an important class of physical structures investigated in nanotechnology. Photonic crystals are materials which are composed of two or more different dielectrics or metals, and which exhibit a spatially periodic structure, typically at the length scale of hundred nanometers. In the mathematical analysis and the numerical simulation of the partial differential equations describing nanostructures, several mathematical difficulties arise, e. g., the appropriate treatment of nonlinearities, simultaneous occurrence of continuous and discrete spectrum, multiple scales in space and time, and the ill-posedness of these problems. This volume collects a series of lectures which introduce into the mathematical background needed for the modeling and simulation of light, in particular in periodic media, and for its applications in optical devices.
|
You may like...
|