Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.
These notes are the result of a course in dynamical systems given at Orsay during the 1976-77 academic year. I had given a similar course at the Gradu ate Center of the City University of New York the previous year and came to France equipped with the class notes of two of my students there, Carol Hurwitz and Michael Maller. My goal was to present Smale's n-Stability Theorem as completely and compactly as possible and in such a way that the students would have easy access to the literature. I was not confident that I could do all this in lectures in French, so I decided to distribute lecture notes. I wrote these notes in English and Remi Langevin translated them into French. His work involved much more than translation. He consistently corrected for style, clarity, and accuracy. Albert Fathi got involved in reading the manuscript. His role quickly expanded to extensive rewriting and writing. Fathi wrote (5. 1) and (5. 2) and rewrote Theorem 7. 8 when I was in despair of ever getting it right with all the details. He kept me honest at all points and played a large role in the final form of the manuscript. He also did the main work in getting the manuscript ready when I had left France and Langevin was unfortunately unavailable. I ran out of steam by the time it came to Chapter 10. M."
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.
These notes are the result of a course in dynamical systems given at Orsay during the 1976-77 academic year. I had given a similar course at the Gradu ate Center of the City University of New York the previous year and came to France equipped with the class notes of two of my students there, Carol Hurwitz and Michael Maller. My goal was to present Smale's n-Stability Theorem as completely and compactly as possible and in such a way that the students would have easy access to the literature. I was not confident that I could do all this in lectures in French, so I decided to distribute lecture notes. I wrote these notes in English and Remi Langevin translated them into French. His work involved much more than translation. He consistently corrected for style, clarity, and accuracy. Albert Fathi got involved in reading the manuscript. His role quickly expanded to extensive rewriting and writing. Fathi wrote (5. 1) and (5. 2) and rewrote Theorem 7. 8 when I was in despair of ever getting it right with all the details. He kept me honest at all points and played a large role in the final form of the manuscript. He also did the main work in getting the manuscript ready when I had left France and Langevin was unfortunately unavailable. I ran out of steam by the time it came to Chapter 10. M."
This book contains a collection of articles corresponding to some of the talks delivered at the Foundations of Computational Mathematics conference held at IMPA in Rio de Janeiro in January 1997. Some ofthe others are published in the December 1996 issue of the Journal of Complexity. Both of these publications were available and distributed at the meeting. Even in this aspect we hope to have achieved a synthesis of the mathematics and computer science cultures as well as of the disciplines. The reaction to the Park City meeting on Mathematics of Numerical Analy sis: Real Number Algorithms which was chaired by Steve Smale and had around 275 participants, was very enthusiastic. At the suggestion of Narendra Karmar mar a lunch time meeting of Felipe Cucker, Arieh Iserles, Narendra Karmarkar, Jim Renegar, Mike Shub and Steve Smale decided to try to hold a periodic meeting entitled "Foundations of Computational Mathematics" and to form an organization with the same name whose primary purpose will be to hold the meeting. This is then the first edition of FoCM as such. It has been organized around a small collection of workshops, namely - Systems of algebraic equations and computational algebraic geometry - Homotopy methods and real machines - Information-based complexity - Numerical linear algebra - Approximation and PDEs - Optimization - Differential equations and dynamical systems - Relations to computer science - Vision and related computational tools There were also twelve plenary speakers."
An extraordinary mathematical conference was held 5-9 August 1990 at the University of California at Berkeley: From Topology to Computation: Unity and Diversity in the Mathematical Sciences An International Research Conference in Honor of Stephen Smale's 60th Birthday The topics of the conference were some of the fields in which Smale has worked: * Differential Topology * Mathematical Economics * Dynamical Systems * Theory of Computation * Nonlinear Functional Analysis * Physical and Biological Applications This book comprises the proceedings of that conference. The goal of the conference was to gather in a single meeting mathemati cians working in the many fields to which Smale has made lasting con tributions. The theme "Unity and Diversity" is enlarged upon in the section entitled "Research Themes and Conference Schedule." The organizers hoped that illuminating connections between seemingly separate mathematical sub jects would emerge from the conference. Since such connections are not easily made in formal mathematical papers, the conference included discussions after each of the historical reviews of Smale's work in different fields. In addition, there was a final panel discussion at the end of the conference.
|
You may like...
Women In Solitary - Inside The Female…
Shanthini Naidoo
Paperback
(1)
Gangster - Ware Verhale Van Albei Kante…
Carla van der Spuy
Paperback
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram
Paperback
(2)
|